Raman spectra and calorimetric studies of MWCNTs

<u>Maksym Barabashko¹</u>, D. Szewczyk², A. Jeżowski², P. Gluchowski²,

M. Drozd², M.I. Bagatskii¹, V.V. Sumarokov¹, A.N. Ponomarev³,

V.L. Kuznetsov^{4,5}, S.I. Moseenkov⁴

¹B. Verkin Institute for Low Temperature Physics and Engineering of NAS of Ukraine, 47 Nauky Ave., Kharkiv, 61103, Ukraine

²Institute for Low Temperatures and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland

³Institute of Strength Physics and Materials Science of SB RAS, 2/4 Academicheskii Ave., Tomsk 634055, Russia

⁴Boreskov Institute of Catalysis, 5 Lavrentiev Ave., Novosibirsk 630090, Russia

⁵National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia

e-mail: <u>barabaschko@ilt.kharkov.ua</u>

Results

Calorimetric, DSC, XPS, NEAFS and Raman studies of multi-walled carbon nanotubes (MWCNTs) have been done. The experimental results are shown in Fig. 1-4. The heat capacity of MWCNTs in the temperature interval from 2 to 275 K was measured by the relaxation method using PPMS [1]. The size effects are observed in the temperature dependences of the specific heat of $C_p(T)$ for MWCNTs. The kinetic processes in MWCNTs were studied from room temperature to 500 K in a nitrogen flow using differential scanning calorimetry (DSC) on a Perkin - Elmer - 8000. It was found that all studied MWCNTs have a small number of defects, functional groups, and other impurities. The Raman measurements were performed in backscattering geometry using a Renishaw InVia Raman microscope equipped with a confocal DM 2500 Leica optical microscope and a CCD detector. In the Raman spectra of MWCNTs, defect-induced phonon mode so-called D band is observed near 1346 cm⁻¹. The high-energy G mode (1572 cm⁻¹), due to vibrations of carbon atoms in the walls of the nanotubes, is shifted toward the lower frequencies compared to the G mode of graphite (1580 cm⁻¹). The 2D band related with the two-phonon scattering is observed near 2688 cm⁻¹. The dependence of the I_D/I_{2D} ratio on the average diameter of MWCNTs is in good agreement with the data of [2]. I_D> I_{2D} for MWNTs with an average diameter d <15 nm and I_D <I_{2D} for MWNTs with d> 15 nm.

9nm (curve 2), and 18 nm (curve 3).

Fig. 3. The temperature dependences of the specific heat of the MWCNTs 7 nm (curve 2), 9 nm (curve 3) and 18 nm (curve 4) in comparison with specific heat of single-walled SWNT bundles (1) and graphite (5). The insert: TEM of MWCNTs 7 nm (up) and 18 nm (below).

320

Acknowledgements:

M.S. Barabashko was supported by Scholarship for Young Scientists in W. Trzebiatowski Institute of Low Temperature and Structure Research, PAS.

V.V. Sumarokov, A Jeżowski, D Szewczyk, M.I. Bagatskii, M.S. Barabashko, A.N. Ponomarev, V.L. Kuznetsov, S.I. Moseenkov, Low Temp. Phys. 45(3), 347–354, (2019). [Fiz. Nizk. Temp. 45(3), 395–403 (2019)].
S.N. Bokova-Sirosh, V.L. Kuznetsov, A.I. Romanenko, M.A. Kazakova, et al., J. Nanophotonics 10, 012526 (2016).