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INTERACTIONS IN LAYERED SYSTEMS?
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WHY DO WE NEED TO KNOW ELECTROSTATIC
INTERACTIONS IN LAYERED SYSTEMS?
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Excitonic superfluidity in double phosphorene monolayers is investigated using the BCS mean-field equations.
Highly anisotropic superfluidity is predicted where we found that the maximum superfluid gap is in the Bose-
Einstein condensate (BEC) regime along the armchair direction and in the BCS-BEC crossover regime along the
zigzag direction. We estimate the highest Kosterlitz-Thouless transition temperature with maximum value up to
~90 K with onset carrier densities as high as 4 x 10'2 cm~2. This transition temperature is significantly larger
than what is found in double electron-hole few-layers graphene. Our results can guide experimental research
toward the realization of anisotropic condensate states in electron-hole phosphorene monolayers.

armchair

FIG. 1. Schematic illustration of two phosphorene sheets sepa-
rated by a thin barrier of h-BN layers. The electrons and holes are
induced by top and back gates in the separately electrically contacted
upper and lower phosphorene sheets.
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Fig. 1.7. Schematic view of SEs on a helium film and major image charges



WHY DO WE NEED TO KNOW ELECTROSTATIC
INTERACTIONS IN LAYERED SYSTEMS?
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EXCITONS AND POLARITONS IN SEMICONDUCTOR/INSULATOR
QUANTUM WELLS AND SUPERLATTICES

L. V. Keldysh
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Moscow, USSR
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Schemes for increasing the binding energies of Wannler-Mott excitons in
semiconductor/insulator quantum wells and superlattices are proposed.
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Fig. 1. Semiconductor-insulator quantum well
(a) and superlaccice (b).
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WHY DO WE NEED TO KNOW ELECTROSTATIC
INTERACTIONS IN LAYERED SYSTEMS?
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Theory of neutral and charged excitons in monolayer transition metal dichalcogenides
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We present a microscopic theory of neutral excitons and charged excitons (trions) in monolayers of transition
metal dichalcogenides, including molybdenum disulfide. Our theory is based on an effective mass model of
excitons and trions, parameterized by ab initio calculations and incorporating a proper treatment of screening
in two dimensions. The calculated exciton binding energies are in good agreement with high-level many-body
computations based on the Bethe-Salpeter equation. Furthermore. our calculations for the more complex trion
species compare very favorably with recent experimental measurements and provide atomistic insight into the
microscopic features which determine the trion binding energy.
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THEORETICAL METHOD: CLASSICAL
AND NON-LOCAL ELECTROSTATICS
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INTERACTION AS A FUNCTIONAL OF
GREEN’S FUNCTIONS

Wii(R.Z,Z') = —2Q¢ / qdqDij (¢, Z, Z") Jo(qR),
0

where the subscripts ¢ and j denote the medium where the charges ) and (),
respectively, are located; R is the horizontal distance between the charges. Z and Z’
are their vertical coordinates; and .Jy(r) is the Bessel function of the first kind.

Green’s functions
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INTERACTION AS A FUNCTIONAL OF
GREEN’S FUNCTIONS

B(Z') = a1(Z") [aa(0) + as(0)] .
By(Z') = a1(Z') [as(0) + a3(0)] .

By(7') = 3 {las(Z) + aa(Z)] [14(0) + as(0)]
+[as(Z’) —as(Z)][aa(0)+ a1 (0)]},

By(Z') = —= {[GS ")+ aa(Z')] [as(0) + az(0)]
—las(Z') — ax(Z2)] [as(0) + a(O)]}

Ba(Z') = a3(Z' — L) [a4(0) + a1(0)],
Bay(Z') = a3(Z' — L) [ag(0) + a1 (0)],

[
)
[
)

C = las(0) + a1(0)] [aa(0) + a3(0)]
+ [as(0) + a3(0)] [a4(0) + a1 (0)] .

Fi(Z.2") =b(2.2").
Fy(2.2') = é bs(Z.2") +ba(2.2)] .
Fy(2.2') = (2. 2").



INTERACTION AS A FUNCTIONAL OF

GREEN’S FUNCTIONS
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THE OLD PROBLEM REVISITED: CHARGES.
EFFECTIVE POWER EXPONENT IN A TWO-
LAYER SYSTEM
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Figure 4. Dependences of the apparent value of the power exponent N in the
Coulombic-like dependence (9) on the distance between the charges for various R.

values. The R_ step between the curves equals 0.1. The point corresponds to the point in
figure 3.

Up to the dipole-like behavior
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THE OLD PROBLEM REVISITED: CHARGES.
EFFECTIVE POWER EXPONENT IN A THREE-

Interaction across the slab

LAYER SYSTEM
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Interaction on the helium film surface



THE OLD PROBLEM REVISITED: CHARGES IN THE
SAME LAYER. THREE-LAYER SYSTEM. THE

EFFECTIVE EXPONENTIAL APPROXIMATION
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THE OLD PROBLEM REVISITED: CHARGES INTERACTING
ACROSS THE LAYER. THREE-LAYER SYSTEM. THE
EFFECTIVE EXPONENTIAL APPROXIMATION
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THE OLD PROBLEM REVISITED: CHARGES INTERACTING
ACROSS THE LAYER. THREE-LAYER SYSTEM. FAMOUS
KELDYSH-RYTOVA APPROXIMATION
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THE OLD PROBLEM REVISITED: DIPOLES INTERACTING
IN TWO-LAYER SYSTEM. PLANAR ALIGNMENT.
CLASSICAL AND INKSON DIELECTRIC FUNTIONS

£-1
+ F(E-1)
wekd (7 — » — — PP’ , f
s (z—z—0)——mx[cos(m—¢)+3cos(¢-+¢)].
(24)
Je1(ep — 1)°

Wcl—ln KL 1,z = 7 =0 :Wcl—cl z=7"=0)+
S ( ) =Wpp~ ( ) (€1 + £2)2r2L2
x [3cos (b — &) + 5cos (b + ¢')],
(25)

PLy /PL

PP [cos (b — ") + 3 cos (b + ¢)] = PP’—?.(T) (T)' (27)

PP'[3 cos (b — ") + 5cos (b + ¢')] = 2 [PP’ -5 (%) (?)] .

(28)



THE OLD PROBLEM REVISITED: DIPOLES INTERACTING
IN TWO-LAYER SYSTEM. NORMAL ALIGNMENT.
CLASSICAL AND INKSON DIELECTRIC FUNTIONS

Classical
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It comes about from Eqs. (32)-(34) that the spatial dispersion of
dielectric permittivity in the both media or only one of them reduces

the dipole-dipole repulsion, which should be taken into account in
calculations for dipole lattices [153]. Notwithstanding the smallness
of the expansion parameter 1/[2x2, the “geometric” coefficient 9
makes the correction factor to the classical asymptotics significant.



CONCLUSIONS

——
®m 1. Coulomb charge-charge interaction is violated due to the

appearance of the polarization charges.

®m 2. The usage of Rytova-Keldysh formula in exciton
physics Is sometimes not only inaccurate but totally
Incorrect.

® 3. A new simple formula is suggested, which is much more
simple and accurate than the Rytova-Keldysh one.

® 4. The dipole-dipole interaction is substantially modified
by the spatial dispersion of the dielectric permittivity.
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