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1 Analytical derivation of Eq. @ in the main
text
Let us introduce two dimensionless parameters
h=X/H and ¢=k/K, (1)

so that Ky = K/h, Kp = Kh/2(1+0), B = 1/(1+b), 1 — 8 = b/(1 +b),
(Aekir)? = hq/b, (A\er)? = q (1 +b)/b,
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where b = 2(1 4 0)g/h, and consider the typical system with h,q < 1. In this
case € < 1, so that k3 ~ k%(1 + B¢) and k3 ~ k%e (1 — B) = qe/ )2, or

(Aerz) ™ ~ 21 +0) + h/a)'?/h. (3)

In accordance with the numerics (see Fig. 2a), let us assume that in the case
of h,q < 1 the displacement field in the TB is given by

ut(x) ~ Utoeimzaj (4)

and does not change during front propagation. Before nucleation of the first
precursor, the solution of Eq. 7 in the main text is

u(x) = Aszgsinh(kz) + Ay cosh(kx)
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The right-hand-side boundary condition, u(z) — 0 at & — oo, gives us
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while the left-hand-side boundary condition (Eq. 10 in the main text) leads to
the equation

(Ago — A30)(1 4+ Ack)(k + Kk2) = BUK(L + ak + 2AcK2) . (7)
Thus, before nucleation of the first precursor, the IL displacement field is

BU/{Z <6_K2£ ) (1 + /\CKQ) —mﬂ) - (8)
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Equation (8) allows us to couple the parameters U = u4(0) and u, = u(0):

U= u. (1+%) /(BT), 9)
where \
_ F2 AR
\111_14—&(1_’_/\6&). (10)

When the displacement of the IL trailing edge reaches the threshold value
ug at some U = Uy = us(1 + ko/k)/(8V¥1), the front starts to propagate. In
this case the solution of Eq. 7 in the main text, ahead of the propagating front,
x > s, where up(z) = 0 so that w(z) = Bus(x) = BUge "2*, is given by

ﬂ(x;s) = A3(5) e—n(m—s) + A4(S) eﬁ,(m—s)
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The right-hand-side boundary condition gives us the coefficient A4(s),
1 ke 28
Ag(s) = = BUE—— 12
(8) = 3 AU s (12)
so that Eq. (11) takes the form
~ BU()IQQ .
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Behind the propagating front, x < s, where w(z) = Bu(z) + (1 — 8) up(z)
and up(z) = u(x +0;2) = Az(x) + A4(z), the solution of Eq. 7 in the main text
is given by

u(x; s) = Ap(s) sinh(kx) + As(s) cosh(kx)
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= BUyF () + A1(s) sinh(kz) + Aa(s) cosh(kx)
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so that F(0) = 0 and F'(0) =

The coefficients A _(s) in these equations are determined by the boundary
and continuity conditions. The left-hand-side boundary condition (Eq. 10 in
the main text) couples the coefficients A;(s) and Az(s). Using up(0) = us,
u(0; s) = Aa(s) and @' (0; s) = kA1 (s), we obtain

Az(s) = (Ack) ™ Ax(s) = U3,
\1’3:6[]0—"-(1—6) Ug . (18)

The continuity conditions (Egs. 23 and 24 in the main text) lead to two equations

(1) [ de ) sinblis(s — €] + Aafs)
= Ai(s)sinh(ks) + Aa(s) cosh(ks) + BUP4(s) (19)
and
£(1=5) [ deAal6) coshln(s - )] - a(s)
= A;(s) cosh(ks) + As(s)sinh(ks) + SUsUs(s), (20)



where
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Ws(s) = f/’is) _ 2’(‘””:;”;; . (22)

Taking the difference and sum of Egs. (19) and (20), we obtain two new equa-
tions:

2A3(s (1-p /dgAg eré
= Aa(s) — Ai(s) + BUp[Pa(s) — Ws(s)] €™, (23)
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Using Eq. (18), Egs. (21) and (22) may be rewritten as
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Combining these equations, we finally come to the integral equation for the
coefficient Asz(s):
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so that
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From Eq. (27) we find that
Ag(O) = [)\cli\lfg + ﬂUO\IJQ\Ifg(O)]/(l + )\CKJ> . (30)
Differentiating Eq. (27), we obtain a differential equation for As(s):
(1-5)
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From Eq. (31) we obtain that at short distances, s < k=1, A3(s) ~ A3(0)(1 +
~38), where
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From Egs. (12) and (31) it follows that @(s + 0;s) = As(s) + As(s) =~
Ag (14 7s) at short distances, s < k1, where

V3 = (32)

Ag = A3(0) + A4(0) (33)

and
7 = [13A3(0) — £2A4(0)] /Ao, (34)
while for long distances, s > k=1, (s + 0; 5) decays exponentially,
u(s+0;8) = Ae "2
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The function @(s + 0; s) may be approximated as
~ (14 C)>etiss
0;8)~ Ag —F—— 36
u(s+ 0;5) 0 (5 + C) (36)
where
a=1+ka/ks, (37)
C = (k2 +7)/(k3—7), (38)
and comparing Egs. (34) and (36), we obtain a nonlinear equation, which defines
the value k3:
A ( /‘62) Ko + K3
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Then, the IL stress ahead of the front is o.(s) = ku(s + 0;5)/\2, and the
equation o.(A) = o, defines the characteristic length A:

A=rkytiny, (40)

where y is determined by the solution of the equation By = (y + C)* with
B = (1+C)°kAo/(5,\2).
Using Eq. (35), A may approximately be presented as

A= /12_1 In (k:A/ch)\z)
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Equation (35) corresponds to the analytical solution for A, whereas Eq. (41)
corresponds to the approximated analytical solution provided as Eq. 25 in the
main text.





