<u>УСПЕХИ ФИЗИЧЕСКИХ НАУК</u>

539.211

ВЗАИМОДЕЙСТВИЕ МЕЖДУ ЧАСТИЦАМИ, АДСОРБИРОВАННЫМИ НА ПОВЕРХНОСТИ МЕТАЛЛОВ

О. М. Браун, В. К. Медведев

(Институт физики АН УССР)

СОДЕРЖАНИЕ

1.	Введение	631
2.	Теоретические представления о механизмах взаимодействия между адсорби-	
	рованными атомами	632
	2.1. Основные сведения из теории хемосорбции. 2.2. Непрямое взаимодействие	
	адатомов: ближняя зона. 2.3. Непрямое взаимодействие адатомов: асимпто-	
	тики. 2.4. Электростатическое взаимодействие адатомов. 2.5. Прямое взаимо-	
	действие адатомов. 2.6. Взаимодействие атомов, адсорбированных на поверх-	
	ности полупроводника. 2.7. Взаимодействие атомов в адсорбированной пленке.	
-3.	Экспериментальные исследования взаимодействия между адсорбированными	
	атомами	646
	3.1. Исследования с помощью автоионной микроскопии. 3.2. Исследования	
	с помощью дифракции медленных электронов. Гладкие грани. 3.3. Исследова-	
	ния с помощью дифракции медленных электронов. Бороздчатые грани.	
4.	Влияние межатомного взаимодействия на свойства адсорбционных систем	657
	4.1. Перестройка структуры адсорбированного слоя. 4.2. Реконструкция	
	поверхности кристалла. 4.3. Термическая устойчивость адсорбированных пле-	
	нок. 4.4. Работа выхода адсистем. 4.5. Каталитическая активность поверхности.	
5.	Заключение	661
Сг	писок литературы	662

1. Введение. При адсорбции чужеродных атомов или молекул на поверхность твердого тела основное изменение большинства свойств поверхности происходит при заполнении тончайшего (толщиной в один атом или молекулу) слоя. Это обстоятельство предопределяет повышенный интерес к изучению свойств субмонослойных (более разреженных, чем монослой) покрытий ¹.

Во всех явлениях на поверхности важную роль играет взаимодействие между адсорбированными частицами. Оно оказывает существенное влияние практически на все свойства адсорбированного слоя — его структуру, термическую устойчивость, спектры колебаний адатомов, миграцию частиц по поверхности, реакции на поверхности и т. д. Это взаимодействие также влияет на закономерности изменения различных свойств поверхности (работы выхода, каталитической активности и т. д.) под воздействием адсорбированного слоя.

С физической точки зрения адсорбированная пленка представляет собою систему с пониженной размерностью, расположенную на границе двух сред — вакуума и твердого тела. Взаимодействие между адсорбированными атомами осуществляется одновременно через обе эти среды и поэтому существенно отличается как от взаимодействия между свободными атомами, так и от взаимодействия между примесными атомами в глубине кристалла. Описанию основных механизмов взаимодействия между адатомами, характеристике их закономерностей в различных системах, влияния взаимодей-

ствия на свойства адсорбционных систем и посвящен настоящий обзор. В отличие от опубликованного в 1978 г. обзора Эйнштейна² в настоящей работе подробно рассмотрена роль электронной структуры подложки во взаимодействии адатомов, а также проанализирован на основе имеющихся теоретических представлений большой экспериментальный материал, полученный в последние годы.

Отметим, что хотя речь будет идти в основном об адсорбированных атомах, все сказанное в равной мере будет относиться и к адсорбированным на поверхности кристалла молекулам. Рассмотрены будут только хемосорбционные системы; взаимодействие между физадсорбированными атомами и молекулами описано в обзоре².

2. Теоретические представления о механизмах взаимодействия между адсорбированными атомами. Различные механизмы взаимодействия адатомов удобно рассматривать, классифицируя их по природе виртуальных квазичастиц, которыми обмениваются адсорбированные атомы. Так, взаимодействие, обусловленное непосредственным обменом электронами между адатомами, согласно сложившейся в теории хемосорбции терминологии, называется прямым (direct), а взаимодействие, обусловленное обменом электронами через зону проводимости подложки, — непрямым (indirect) *). Электростатическое взаимодействие между заряженными адатомами возникает из-за обмена фотонами и поверхностными плазмонами, упругое из-за обмена фононами и т. д. Очевидно, однако, что такое деление механизмов строго лишь постольку, поскольку строго рассмотрение подложки как системы, состоящей из невзаимодействующих квазичастиц. Отметим также условность принятой терминологии, так как, строго говоря, любое взаимодействие адатомов является непрямым, поскольку в нем принимает участие подложка.

Естественно, что ранее аналогичные механизмы рассматривались при изучении взаимодействия примесей в объеме твердого тела. Рудерман и Киттель³ впервые показали, что во взаимодействии примесей в металле важную роль играет «непрямая обменная связь» через электроны проводимости металла, энергия которой зависит от расстояния между примесями по закону

$$E(R) \sim R^{-3} \cos(2k_{\rm F}R).$$
 (1)

Дальнодействующий осциллирующий характер этого взаимодействия обусловлен резким обрывом при энергии Ферми $\varepsilon = \varepsilon_{\rm F}$ распределения электронов проводимости в металле, так что интерференция рассеянных на примеси электронных волн с фермиевским импульсом $k = k_{\rm F}$ приводит к хорошо известным фриделевским осцилляциям плотности электронов^{4,5}. Очевидно, что фриделевские осилляции должны существенно зависеть от формы поверхности Ферми (ПФ) металла. Действительно, было показано⁶, что если на ПФ имеются цилиндрические участки, то в направлении, перпендикулярном оси цилиндра,

$$E(R) \sim R^{-2} \sin\left(2k_{\rm F}R\right),\tag{2}$$

а при наличии плоских участков на $\Pi\Phi$ в перпендикулярном им направлении 7

$$E(R) \sim R^{-1} \cos(2k_{\rm F}R).$$
 (3)

Аналогичные фриделевские осцилляции имеются и при взаимодействии между адсорбированными атомами на поверхности металла, причем в силу ряда причин здесь они проявляются более ярко. Первым осциллирующий

^{*)} Иногда употребляются термины «прямое (непрямое) обменное электронное» взаимодействие.

характер взаимодействия адатомов отметил Гримли⁸⁻¹⁰. Затем Габович и Пашицкий¹¹, а также Лау и Кон¹² обратили внимание на то, что при наличии перпендикулярных поверхности цилиндрических или плоских участков на ПФ подложки в соответствии с (2) и (3) взаимодействие адатомов должно быть дальнодействующим. Нужно сразу отметить, что если взаимодействие обусловлено обменом квазичастицами металлической подложки, то оно всегда будет иметь фриделевскую осциллирующую составляющую, амплитуда которой при $R \rightarrow \infty$ спадает с R по степенному закону, причем показатель степенни определяется только электронной структурой подложки.

Рассмотрение различных механизмов взаимодействия начнем с наиболее интересного—непрямого взаимодействия адатомов. Вначале, однако, изложим кратко необходимые сведения из теории хемосорбции.

2.1. О с н о в н ы е с в е д е н и я и з т е о р и и х е м о с о р б ции. В 1935 г. Герни ¹³ предположил, что при хемосорбции атома образуется так называемый виртуальный электронный уровень. Именно, при приближении атома к поверхности металла на некоторое небольшое (в атомном масштабе) расстояние *а* электронный уровень свободного атома под действием приповерхностного поля металла сдвигается. Если при этом уровень оказывается расположенным напротив зоны проводимости металла, становится возможным туннелирование электронов из зоны проводимости на уровень адатома и обратно, вследствие чего дискретный электронный уровень превращается в виртуальный с конечной полушириной Δ . Теоретически этот процесс описывается гамильтонианом

$$H = H_{\rm A} + H_{\rm S} + H_{\rm mix}.\tag{4}$$

В дальнейшем будем использовать технику опережающих функций Грина.

Если у адатома учитывается только одна валентная орбиталь $|A\rangle$, то гамильтониан адатома $H_{\rm A} = \varepsilon_{\rm A} c_{\rm A}^* c_{\rm A}$ (с и c^* —операторы вторичного квантования), а функция Грина свободного атома равна $G_{\rm A}$ (ε) = ($\varepsilon - \varepsilon_{\rm A} - i0$)⁻¹.

$$G_{\rm S} \left(\mathbf{R}_i - \mathbf{R}_j; \ \varepsilon \right) = \langle i \mid (\varepsilon - H_{\rm S} - i0)^{-1} \mid j \rangle. \tag{5}$$

Метод вычисления функции G_8 для подложек с разной электронной структурой будет описан в разделе 2.3. Там же будет показано, что при $R \ge a_0$ $(a_0 - \text{постоянная решетки подложки})$

$$G_{\rm S}(R; \ \varepsilon) \approx R^{-\nu}g_{\nu}(\varepsilon) \exp\left(-ik(\varepsilon)R\right),\tag{6}$$

где $k(\varepsilon)$ — волновой вектор в направлении вектора **R** для электрона подложки с энергией ε , v — неотрицательное целое число, определяемое строением ПФ подложки, $g_v(\varepsilon)$ — некоторая плавная функция.

Оператор H_{mix} описывает связь адатома с подложкой. Если адатом связывается только с одним поверхностным атомом подложки $|i\rangle$, то

$$H_{\min} = V c_{\mathbf{A}}^* c_i + \mathfrak{d}. c_{\mathbf{A}}, \tag{7}$$

где $V = \langle A \mid H \mid i \rangle$ — интеграл перекрытия волновых функций. Обобщение на случай, когда адатом связывается с несколькими поверхностными атомами подложки, не представляет затруднений и сводится к перенормировке параметров ε_A и $V^{14,15}$.

Описанная модель хемосорбции носит название «модель Андерсона — Ньюнса» $\tilde{G} = (\varepsilon - H - i0)^{-1}$ удобно использовать уравнение Дайсона

$$\widetilde{G} = G + GH_{\min}\widetilde{G}.$$
(8)

Преимущество такого подхода состоит в возможности последовательно учитывать различные члены в операторе H_{mix} . Уравнение (8) матричное; при описании адсорбции одного атома матрицы имеют размерность (2 × 2) (базис | A > и | i >). Поскольку матрица G известна, причем $\langle A | G | i \rangle = 0$, то из (8) легко получить функцию Грина адатома:

$$\hat{G}_{\rm A}(\varepsilon) \equiv \langle A | \hat{G}(\varepsilon) | A \rangle = (\varepsilon - \varepsilon_{\rm A} - V^2 G_{\rm S}(0; \varepsilon))^{-1}.$$
(9)

Таким образом, сдвиг электронного уровня адатома при хемосорбции равен $\Lambda \equiv \Lambda (\varepsilon_A) = \operatorname{Re} V^2 G_{\mathrm{S}}(0; \varepsilon_A)$, а его полуширина равна $\Delta \equiv \Delta (\varepsilon_A) =$ = Im $V^2 G_{\mathrm{S}}(0; \varepsilon_A)$. Отметим, что обычно при хемосорбции $\Lambda \sim \Delta \sim 1$ эВ ¹⁵. Адсорбция атома вызывает изменение плотности электронных состоя-

ний системы $\rho(\varepsilon) = \pi^{-1} \operatorname{Im} \widetilde{G}(\varepsilon)$, которое «чувствует» второй адатом. Это и приводит к непрямому взаимодействию между адатомами, впервые рассмотренному Коутецким¹⁸. В случае адсорбции двух одинаковых атомов А и В на адсорбционных местах $|i\rangle$ и $|j\rangle$, разделенных расстоянием $R = |\mathbf{R}_i - \mathbf{R}_j|$, уравнение Дайсона (8) имеет размерность (4 × 4) (базис $|A\rangle$, $|B\rangle$, $|i\rangle$ и $|j\rangle$) и также несложно решается².

Энергия взаимодействия адатомов определяется как

$$E_{\text{int}}(R) = \langle H(R) \rangle - \langle H(R = \infty) \rangle.$$

Представление величины E_{int} (*R*) через функцию Грина \tilde{G} подробно описано в обзорах ^{2,19–23}, а также в работах ^{14,24–26}. Поэтому приведем сразу выражение для энергии непрямого взаимодействия, получаемое при использовании температурной техники функций Грина ²⁷:

$$E_{\text{ind}}(R) = -\frac{2}{\pi} \int_{-\infty}^{+\infty} d\varepsilon f_{\text{F}}(\varepsilon) \operatorname{Im} \ln (1 - V^{4} \widetilde{G}_{\text{A}}^{2}(\varepsilon) G_{\text{S}}^{2}(R; \varepsilon)),$$

$$f_{\text{F}}(\varepsilon) = \{ \exp \left[(\varepsilon - \varepsilon_{\text{F}}) (k_{\text{B}} T)^{4} \right] + 1 \}^{-1}.$$
(10)

Двойка здесь возникает из-за суммирования по спинам электронов. Если $V^2 \widetilde{G}_A G_S \ll 1$, что всегда выполняется, по крайней мере, при $R \to \infty$, выражение (10) упрощается:

$$E_{\rm ind}(R) \approx \frac{2V^4}{\pi} \ln \int_{-\infty}^{+\infty} d\varepsilon f_{\rm F}(\varepsilon) \widetilde{G}_{\rm A}^2(\varepsilon) G_{\rm S}^2(R; \varepsilon).$$
(11)

Используя для функции Грина подложки выражение (6) и интегрируя (11) по частям, при $R \to \infty$ получаем

$$E_{\rm ind}(R) \approx -\frac{2V^4}{\pi R^{2\nu+1}} \operatorname{Re} \int_{-\infty}^{+\infty} \mathrm{d}\varepsilon f_{\rm F}'(\varepsilon) \ \frac{\varepsilon \alpha(\varepsilon)}{k(\varepsilon)} \widetilde{G}_{\rm A}^2(\varepsilon) \ g_{\nu}^2(\varepsilon) \exp\left(-2ik(\varepsilon) R\right),$$

где $\alpha^{-1}(\varepsilon) = (2\varepsilon/k(\varepsilon)) dk(\varepsilon)/d\varepsilon$ (для квадратичного закона дисперсии электронов подложки α (ε) \equiv 1). Функция $f'_{\rm F}(\varepsilon)$ вырезает при интегрировании узкую область шириной $k_{\rm B}T$ вблизи энергии Ферми. Используя разложение $k(\varepsilon) \approx k_{\rm F} [1 + (\varepsilon - \varepsilon_{\rm F}) (2\varepsilon_{\rm F}\alpha_{\rm F})^{-1}]; \alpha_{\rm F} = \alpha (\varepsilon_{\rm F})$ и, вынося из-под знака интеграла плавно меняющиеся функции, для энергии непрямого взаимо-

действия получаем выражение

$$E_{\rm ind}(R) \approx \frac{2V^4}{\pi R^{2\nu+1}} \frac{\varepsilon_{\rm F} \alpha_{\rm F}}{k_{\rm F}} f\left(\frac{R}{R_T}\right) \operatorname{Re}\left[\widetilde{G}_{\rm A}^2\left(\varepsilon_{\rm F}\right) g_{\nu}^2\left(\varepsilon_{\rm F}\right) \exp\left(-i2k_{\rm F}R\right)\right],\tag{12}$$

где

$$f(x) = \frac{x}{\operatorname{sh} x}, \quad R_T = k_{\mathrm{F}}^{-4} \, \frac{\alpha_{\mathrm{F}} \varepsilon_{\mathrm{F}}}{\pi k_{\mathrm{B}} T}.$$
(13)

Естественно, что при температуре подложки T > 0 на очень больших расстояниях $R \gg R_T$ взаимодействие экспоненциально затухает с расстоянием R:

$$E_{\rm ind}(R) \sim R^{-2\nu} \cos\left(2k_{\rm F}R + \varphi\right) \exp\left(-\frac{R}{R_T}\right). \tag{14}$$

Величина $R_T \sim a_0 (\epsilon_F/k_BT)$ при типичных параметрах $\epsilon_F \approx 5$ эВ, $T \approx 300$ К составляет сотни постоянных решетки, поэтому в дальнейшем температурной зависимостью E_{ind} (R) будем пренебрегать. Отметим, одна-ко, что в реальных кристаллах величина R_T определяется также длиной свободного пробега электронов проводимости, обусловленной их рассеиванием на примесях, фононах кристаллической решетки и т. д.

Поскольку на дальние расстояния взаимодействие переносят электроны с энергиями, близкими к энергии Ферми $\varepsilon_{\mathbf{F}}$, то период осцилляций $E_{\text{ind}}(R)$ и скорость спада амплитуды взаимодействия определяются только строением ПФ подложки в данном направлении. Действительно, из (12) при T = 0получаем $f(R/R_{\tau}) = 1$ и

$$E_{\rm ind}(R) \sim R^{-(2\nu+1)} \cos(2k_{\rm F}R + \phi).$$
 (15)

Непрямое взаимодействие имеет наиболее дальнодействующий характер в случаях плоской (v = 0) и цилиндрической (v = 1/2) поверхностей Ферми, когда взаимодействие переносят большие группы электронов. Подробное рассмотрение асимптотик для подложек с разной электронной структурой будет проведено в разделе 2.3. Вначале, однако, рассмотрим поведение $E_{ind}(R)$ в ближней зоне.

2.2. Непрямое взаимодействие адатомов: ближняя зона. Если на большие расстояния $R \gg R_A$ взаимодействие переносят только электроны с энергиями $\varepsilon \approx \varepsilon_F$, то в ближней зоне $R \leqslant R_A$ во взаимодействии участвуют все электроны проводимости подложки; при этом разные части ПФ дают различный вклад в энергию взаимодействия. Например, для системы H/W (110) электронный «валет» ПФ вольфрама приводит к притяжению адатомов водорода в направлении [111] и отталкиванию в направлениях [110] и [100], а вклад дырочных «карманов» полностью противоположен²⁸.

Численные расчеты показали, что размеры ближней зоны велики по сравнению с a_0 . Например, при адсорбции атомов водорода на поверхности алюминия в модели «желе» $R_A \approx 5$ Å ²⁹, а при адсорбции на грани (100) простой кубической решетки R_A составляет несколько постоянных решетки ³⁰. Исследовать качественное поведение непрямого взаимодействия в ближней зоне можно с помощью выражений (6) и (11). Переходя к интегрированию по переменной k, $d\varepsilon = \left(\frac{2\varepsilon (k) \alpha (k)}{k}\right) dk$, $\alpha (k) = \left(\frac{k}{2\varepsilon (k)}\right) \frac{d\varepsilon (k)}{dk}$, и вынося плавно меняющиеся функции из-под знака интеграла, для энергии взаимодействия получаем выражение

$$\begin{split} & E_{\rm ind}\left(R\right) \approx \\ \approx \frac{2V^4}{\pi R^{2\nu}} \, \frac{2\varepsilon_{\rm F}\alpha_{\rm F}}{k_{\rm F}} \, {\rm Im}\left\{g_{\nu}^2\left(\varepsilon_{\rm F}\right) \exp\left(-i2k_{\rm F}R\right) \, \int\limits_{\cdot}^{k_{\rm F}} \, {\rm d} \widetilde{G}_{\rm A}^2\left(\varepsilon\left(k\right)\right) \exp\left[-i2\left(k-k_{\rm F}\right)R\right]\right\}. \end{split}$$

Полагая переменную k комплексной и смещая контур интегрирования в нижнюю полуплоскость, с учетом выражения (9) для \widetilde{G}_{A} (ε) и разложения ε (k) $\approx \varepsilon_{F} [1 + (k - k_{F}) \alpha_{F} (2k_{F})^{-1}]$ получаем

$$\approx -\frac{2V^4}{\pi R^{2\nu}} \frac{16k_{\rm F}R}{\varepsilon_{\rm F}\alpha_{\rm F}} \operatorname{Re}\left\{g_{\nu}^2\left(\varepsilon_{\rm F}\right)\left[\exp\left(-SR\right)\operatorname{Ei}\left(SR\right)-(SR)^{-1}\right]\exp\left(-i2k_{\rm F}R\right)\right\}, \quad (16)$$

где Еі — интегральная показательная функция,

$$S = i \frac{4k_{\rm F}}{\alpha_{\rm F}} \left(\widetilde{\epsilon}_{\rm A} - \epsilon_{\rm F} + i\Delta_{\rm F} \right) \epsilon_{\rm F}^{-1},$$

$$\widetilde{\epsilon}_{\rm A} = \epsilon_{\rm A} + \Lambda \left(\epsilon_{\rm F} \right), \ \Delta_{\rm F} = \Delta \left(\epsilon_{\rm F} \right).$$
 (17)

В дальней зоне $R \gg R_A$ из (16) следует асимптотика (15), а в ближней зоне $R \leqslant R_A$ приближенно получаем (ср. с результатами работ ^{31,32})

$$E_{\rm ind}(R) \approx -\frac{8V^4}{\pi R^{2\nu}} \operatorname{Im}[\widetilde{G}_{\rm A}(\varepsilon_{\rm F}) g_{\nu}^2(\varepsilon_{\rm F}) \exp\left(-i2k_{\rm F}R\right)].$$
(18)

Отметим, что в ближней зоне период осцилляции также определяется импульсом Ферми $k_{\rm F}$ и не зависит от параметров адатома³¹.

Размеры ближней зоны определяются параметрами адатома:

$$R_{\mathbf{A}} = |S^{-1}| = (4k_{\mathbf{F}})^{-1} \boldsymbol{\alpha}_{\mathbf{F}} \boldsymbol{\varepsilon}_{\mathbf{F}} [(\boldsymbol{\varepsilon}_{\mathbf{A}} - \boldsymbol{\varepsilon}_{\mathbf{F}})^2 + \Delta_{\mathbf{F}}^2]^{-1/2}.$$
(19)

При типичных для хемосорбционных систем параметрах $|\tilde{\epsilon}_A - \epsilon_F| \approx \Delta_F \approx \approx 0.5$ эВ, $\epsilon_F \approx 5$ эВ, $k_F \approx a_0^{-1}$ получаем $R_A \approx 2a_0$, что согласуется с приведенными выше результатами численных расчетов. Однако если адатом сильно возмущает электронный спектр подложки, то есть если адатом имеет узкий виртуальный уровень, расположенный вблизи уровня Ферми ($|\epsilon_A - \epsilon_F| \leq \Delta \ll \epsilon_F$), то размеры ближней зоны значительно больше ($R_A \gg a_0$). Подчеркнем, что в этом случае велика также и амплитуда непрямого взаимодействия $2^{26,33}$, причем спад ее с R в ближней зоне более медленный, чем в дальней $3^{1,32}$.

Точно вычислить величину энергии E_{ind} в ближней зоне сложно, так как необходимо строго учитывать электронную структуру подложки. Оценки, проведенные в ряде работ ^{2,14,24,28,31,34}, показали, что при адсорбции щелочных атомов в ближней зоне $E_{ind} \sim 0,1$ эВ. Более точные значении энергии взаимодействия для различных хемосорбционных систем получаются при обработке экспериментальных данных (см. раздел 3).

2.3. Непрямое взаимодействие адатомов: асимптотики. Поскольку поведение энергии непрямого взаимодействия в дальней зоне $R \gg R_A$ полностью определяется формой ПФ подложки, то исследование асимптотик функции $E_{ind}(R)$ сводится к вычислению функции Грина $G_S(R; \varepsilon)$. Для этого удобно использовать приближение сильной связи, позволяющее моделировать подложки с различной электронной структурой³¹.

2.3.1. Плоская ПФ. Простейшей моделью металла с плоской ПФ является одномерная линейная цепочка атомов с законом дисперсии электронов ε (k) = $\varepsilon_c - 2\gamma \cos(a_0k)$, где γ — интеграл перекрытия орбиталей соседних атомов, ε_c — центр зоны проводимости, $W = 4\gamma$ — ее ширина. Выберем систему единиц, в которой $\varepsilon_c = 0$, $\gamma = 1/2$ и $a_0 = 1$. Тогда функция Грина подложки в «точечном» базисе ($R = ma_0$) равна

$$G_{\rm S}(m; \epsilon) = (2\pi)^{-1} \int_{-\pi}^{+\pi} dk \exp(imk) (\epsilon - \epsilon (k) - i0)^{-1} =$$

= $i (-i)^m (1 - \epsilon^2)^{-1/2} [\epsilon + i (1 - \epsilon^2)^{1/2}]^{|m|} = \frac{\iota}{\sin x_0} \exp(-\iota |m| x_0), \quad (20)$

где соз $x_0 = -\varepsilon$, $0 \le x_0 \le \pi$. Таким образом, при взаимодействии адатомов вдоль плотноупакованных цепочек атомов подложки (т. е. перпендикулярно плоским участкам $\Pi \Phi$) E_{ind} (R) ~ R^{-1} ($\nu = 0$). Описанная ситуация соответствует, например, взаимодействию адатомов на грани (112) вольфрама в направлении [111].

2.3.2. Цилиндрическая ПФ; ось цилиндра перпендикулярна поверхности кристалла. Металл с цилиндрической ПФ можно смоделировать с помощью простой квадратной решетки. Для системы координат, изображенной

Рис. 1. Простая квадратная решетка (*a*) и соответствующая обратная решетка (б). Показаны узлы решетки (точки), линии постоянной энергии электронов (тонкие сплошные линии), выбор координатных осей и зоны Бриллюэна (жирная линия)

на рис. 1, выражение для дисперсии электронов принимает вид $\mathbf{\epsilon}$ (\mathbf{k}) = $-2 \cos(k_y) \cos(k_x/2)$, $-\pi \leq k_x$, $k_y \leq +\pi$, так что функция Грина в «точечном» базисе в направлении [11] определяется интегралом ($R = \sqrt{2} ma_0$)

$$G_{\mathbf{S}}(m; \mathbf{\epsilon}) = i (2\pi)^{-1} \int_{-\pi}^{+\pi} \mathrm{d}k_{\mathbf{x}} \exp\left(imk_{\mathbf{x}}\right) \left(4\cos^{2}\frac{k_{\mathbf{x}}}{2} - \epsilon^{2}\right)^{-1/2}.$$
(21)

Метод взятия интегралов типа (21) подробно описан в работе ³⁵. Он сводится к переходу в комплексную плоскость, нахождению точек ветвления подынтегрального выражения и смещению контура интегрирования в верхнюю полуплоскость. В результате при $m \ge 1$ получаем

$$G_{\rm S}(m;\ \varepsilon) \approx (-4m_{\rm v}\sin 2x_0)^{-1/2} \exp\left(-i2mx_0 + \frac{im}{m_{\rm v}}\right) H_0^{(2)}\left(\frac{m}{m_{\rm v}}\right) \approx$$
(22)
$$\approx (-4m_{\rm v}\sin 2x_0)^{-1/2} \exp\left(-i2mx_0\right) \left[1 - i\frac{2C}{\pi} - i\frac{2}{\pi}\ln\frac{m}{2m_{\rm v}}\right],$$

1248 2
$$m \ll m_{\rm v}, \quad (22a)$$

$$\approx (-2\pi m \sin 2x_0)^{-1/2} \exp\left(-i2mx_0 + i\frac{\pi}{4}\right) \left(1 + i\frac{m_v}{8m}\right),$$

$$m \gg m_v, \quad (226)$$

тде $\cos x_0 = -\epsilon/2$, $H_0^{(2)}$ — функция Ганкеля, C = 0,577...— постоянная Эйлера — Маскерони,

$$m_{\mathbf{v}}\left(\varepsilon\right) = \frac{1}{2} \left[\frac{(4-\varepsilon^2)^{1/2}}{\varepsilon} - \frac{\varepsilon}{(4-\varepsilon^2)^{1/2}} \right],\tag{23}$$

а также для определенности здесь и ниже считается: $x_0 > \pi/2$, $\varepsilon > 0$, m > 0, $m_v > 0$. Из (226) видно, что при $R \to \infty$, $E_{\rm ad}$ (R) ~ R^{-2} (v = 1/2). Такая ситуация соответствует, например, взаимодействию адатомов на грани (0001) рения.

2.3.3. Уплощенные участки ПФ. Направление [11] в простой квадратной: решетке было выбрано не случайно, так как оно позволяет продемонстрировать переход от плоской к цилиндрической ПФ. Наличие на ПФ плоских участков является, конечно, экзотикой. Обычно ПФ металла может иметь только уплощенные участки, характеризующиеся большим радиусом кривизны. Покажем, что в этом случае на малых расстояниях $R \ll R^*$ взаимодействие носит такой же характер, как и для плоской ПФ. Действительно (см. рис. 1, δ), при $\varepsilon \to 0$ изоэнергетическая поверхность (точнее, линия) для квадратной решетки становится плоской (прямой). Из выражений (22) видно, что асимптотика $E_{ind}(R) \sim R^{-2}$ справедлива лишь на больших расстояниях $R \gg R^* = \sqrt{2} m_v$ (ε_F) a_0 ; в ближней зоне $R \ll R^*$ имеется предасимптотика $E_{ind}(R) \sim R^{-1}$. Величина R^* , разделяющая дальнюю и ближнюю зоны, пропорциональна радиусу кривизны уплощенного участка ПФ в данном направлении. Отметим, что при $\varepsilon_F \to 0$, когда ПФ становится плоской, из (23) следует $R^* \to \infty$, т. е. предасимптотика занимает все пространство.

2.3.4. Открытые участки ПФ. В некоторых металлах, например в рении в направлении [0001], ПФ пересекается с границей зоны Бриллюэна, т. е. имеет открытые участки. Этот случай несложно смоделировать, рассмотрев прямоугольную решетку с неравными интегралами перекрытия $\gamma_1 \neq \gamma_2$. Тогда в направлении открытых участков получаем $G_{\rm S}(R) \sim \sim \exp{(-\alpha R)}$, так что непрямое взаимодействие спадает по экспоненциальному закону (см. также¹¹).

2.3.5. Цилиндрическая $\Pi \Phi$; ось цилиндра параллельна поверхности. Рассмотренные выше асимптотики полностью аналогичны «объемным». «Поверхностный» случай удобно исследовать с помощью метода Калкстейна и Совена ^{15,36,37}. Именно, сначала вычисляется функция Грина бесконечного кристалла в смешанном базисе $|n, k_{||}\rangle$, где $n = 0, +1, \pm 2, \ldots$ нумерует атомные плоскости, параллельные будущей поверхности, а $k_{||}$ — двумерный волновой вектор вдоль них. Затем бесконечный кристалл «разрезается» между атомными плоскостями n = 0 и n = -1 на две половины; возникающие при «разрезе» возмущения легко учитываются с помощью уравнения Дайсона. Так, если функция Грина бесконечной квадратной решетки определяется интегралом (21), то после «разреза» вдоль оси Ох «поверхностная» функция Грина равна

$$G_{\rm S}(m;\ \varepsilon) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \mathrm{d}k_x e^{imk_x} \frac{\varepsilon + i \, [4\cos^2(k_x/2) - \varepsilon^2]^{1/2}}{2\cos^2(k_x/2)} \approx$$
(24)

$$\approx \left(-\frac{\pi}{\sin 2x_0}\right)^{-1/2} (2m)^{-3/2} \frac{4}{\epsilon^2} \exp\left(-i2mx_0 - i\frac{\pi}{4}\right)$$
(24')

при $m \gg m_{\rm S} = (4 - \epsilon^2)^{1/2}/\epsilon$. Таким образом, при взаимодействии адатомов в направлении, перпендикулярном оси цилиндрической ПФ, когда ось параллельна поверхности, $E_{\rm ind}(R) \sim R^{-4}$ ³¹. Этот случай соответствует, например, взаимодействию адатомов на грани (1010) рения в направлении [1210].

2.3.6. Сферическая ПФ. Если ПФ подложки не имеет описанных выше особенностей (плоских, цилиндрических или открытых участков), то $E_{\text{ind}}(R) \sim R^{-5}$ (v = 2). Это было показано в работе ^{2,30} для грани (100) простой кубической решетки. Аналогичный результат (v = 2) получается при рассмотрении направлений [100] и [110] для грани (110) кристалла с ОЦК-решеткой ³¹. Впервые правильную асимптотику $E(R) \sim R^{-5}$ для энергии взаимодействия адатомов получили Флорес и др. ³⁸; впоследствии этот результат был подтвержден в модели «желе» в работах ^{12,29,39,40} и в приближении сильной связи в работах ^{2,12,30,31}. Подчеркнем ^{12,31}, что отличие объемной $E(R) \sim R^{-3}$ и поверхностной $E(R) \sim R^{-5}$ асимптотик обусловлено

более плавным поведением функции плотности электронных состояний на поверхности по сравнению с объемом (ср. выражения (21) и (24), а также см. рис. 2) и не связано с геометрическими факторами типа «критическое направление», как предполагалось в работах ^{8–10,30}. При этом вглубь металла амплитуда фриделевских осцилляции спадает как R^{-3} ^{29,38–40}. Более того, если два примесных атома расположены в глубине металла на расстоянии d от поверхности, то на больших расстояниях $R \gg d$ их взаимодействие также носит «поверхностный» характер $E(R) \sim R^{-5}$, хотя на малых расстояниях $R \leq d$ справедлив «объем-

ный» закон Рудермана —Киттеля (1)² 2.3.7. Роль поверхностных электронных состояний. Как правило, на поверхности кристалла имеются поверхностные электронные состояния (ПЭС) *). В двухзонной модели кристалла они возникают в запрещенной зоне из-за обусловленного обрывом решетки перемешивания зон (шоклиевские ПЭС)^{41,42}. В однозонной модели ПЭС появляются, если учесть действующее на поверхности возмущение U, возникающее из-за конечности поверхностного потенциального барьера и релаксации поверхностного слоя атомов (таммовские ПЭС)³⁶. Исследуем их роль во взаимодействии адатомов

Рис. 2. Локальная плотность электронных состояний $\rho_g(\varepsilon)$ на поверхности (сплошная линия) и в объеме (штриховая линия) для грани (100) простой кубической решетки

с помощью рассмотренной выше простой квадратной решетки, разрезанной вдоль оси Ox. Если учесть в уравнении Дайсона поверхностное возмущение U (пусть для определенности U > 0), то поверхностная функция Грина вместо выражения (24) будет определяться формулой

$$G_{\rm S}(m;\ \varepsilon) = \pi^{-1} \int_{-\pi}^{+\pi} \mathrm{d}k_{\rm x} \exp\left(imk_{\rm x}\right) \left[\varepsilon - 2U - i\left(4\cos^2\frac{k_{\rm x}}{2} - \varepsilon^2\right)^{1/2}\right]^{-1}.$$
 (25)

Подынтегральное выражение в (25), кроме точек ветвления, имеет также и полюсы при $\varepsilon_{L}(k_{x}) = U + U^{-1} \cos^{2}(k_{x}/2)$. Если $U \leq 1$ (напомним, что в выбранной системе единиц W = 4), то существует зона ПЭС, занимающая область $U < \varepsilon < 2U$ и расположенная в пределах зоны проводимости подложки. Если ε находится в области ПЭС, то дополнительные полюсы дают вклад в функцию Грина, равный

$$G_{\rm L}(m; \ \varepsilon) = 2i \left(2U - \varepsilon\right) \left(-\sin 2x_{\rm L}\right)^{-1} \exp\left(-i2mx_{\rm L}\right), \tag{26}$$

где $\cos^2 x_{\rm L} = (\varepsilon - U) U$. Таким образом, если уровень Ферми пересекает зону ПЭС, то асимптотика непрямого взаимодействия адатомов будет определяться ПЭС: $E_{\rm ind}$ (R) ~ R^{-1} (v = 0). Аналогично и для трехмерного полубесконечного кристалла – если

Аналогично и для трехмерного полубесконечного кристалла — если в зоне проводимости есть ПЭС (а аккуратные расчеты предсказывают их существование $^{43-45}$) и если уровень Ферми пересекает зону ПЭС, то амплитуда осцилляции E_{ind} (*R*) будет убывать не быстрее чем R^{-2} , а период осцилляции будет определяться импульсом Ферми, соответствующим ПЭС.

2.4. Электростатическое взаимодействие адатомов. Поскольку заполнена электронами лишь часть виртуального уровня адатома, расположенная ниже уровня Ферми $\varepsilon_{\mathbf{F}}$, то адатом имеет

^{*)} Для поверхности ковалентных полупроводников иногда употребляется термин «оборванные связи».

не равный нулю заряд

$$Q = Z - \sum_{\mathbf{A}} \langle n_{\mathbf{A}} \rangle, \quad \langle n_{\mathbf{A}} \rangle = \pi^{-1} \int_{-\infty}^{\mathbf{e}_{\mathbf{F}}} d\mathbf{\epsilon} \operatorname{Im} \widetilde{G}_{\mathbf{A}}(\mathbf{\epsilon}), \qquad (27)$$

где Z — заряд ионного остова; суммирование проводится по квантовым числам валентных орбиталей адатома, в частности, по спину. Кулоновское взаимодействие между электронами приводит к экранировке заряда адатома, так что заряженный адатом вместе с экранирующим его электронным облаком в металле образует диполь. Диполь-дипольное отталкивание адатомов, известное еще со времен Лэнгмюра⁴⁶, и является основной составляющей электростатического взаимодействия.

Теоретически взаимодействие локализованного заряда с электронами металла сводится к взаимодействию с флуктуациями электронной плотности, которые могут быть описаны бозонным полем 47,48. В случае экранировки заряда, расположенного над полубесконечным кристаллом, этими бозонами являются поверхностные плазмоны⁴⁹⁻⁵¹. Поэтому для учета эффектов экранировки при хемосорбции надо добавить в гамильтониан (7) члены, описывающие взаимодействие с поверхностными плазмонами ионного остова и валентных электронов адатома ⁵²⁻⁵⁶. Это взаимодействие приводит к перенормировке параметров ε_A и Δ и к «ионному» вкладу в энергию хемосорбции, определяемому соотношением между частотой флуктуации заряда адатома ω_f и частотой поверхностных плазмонов ω_s ^{55,56}. Заряд адатома Qвозбуждает плазменную подсистему подложки, что «чувствует» второй адатом. В результате и возникает электростатическое взаимодействие между адатомами. Поскольку заряды адатомов флуктуируют независимо, то вклад эффектов экранировки в энергию взаимодействия адатомов сводится к взаимодействию статических электрических зарядов Q, расположенных на расстоянии а (а определяется радиусом адатома) от поверхности кристалла 54,57

В приближении линейного отклика внешние заряды с плотностью ρ_0 (**r**, *t*) создают вблизи поверхности твердого тела потенциал электрического поля

$$\varphi(\mathbf{r}, t) = \int d\mathbf{r}' \int_{0}^{\infty} d\tau D(\mathbf{r}, \mathbf{r}'; \tau) \rho_0(\mathbf{r}', t-\tau), \qquad (28)$$

где D — запаздывающая функция Грина продольного кулоновского поля²⁷. В случае плоской поверхности твердого тела, занимающего полупространство $x \leq 0$ (т. е. в пренебрежении потенциальным рельефом подложки), удобно произвести преобразование Фурье

$$D(x, x'; \mathbf{q}; \omega) = \int dt \int d\mathbf{R} \exp(i\omega t - i\mathbf{q}\mathbf{R}) D(\mathbf{r}, \mathbf{r}'; t).$$

Тогда из уравнения Пуассона для потенциала φ (**r**, *t*) следует интегро-дифференциальное уравнение для функции Грина:

$$\frac{\partial^2}{\partial x^2} - q^2 D(x, x'; \mathbf{q}; \omega) - - 4\pi \int dx'' \Pi(x, x''; \mathbf{q}; \omega) D(x'', x'; \mathbf{q}; \omega) = -4\pi \delta(x - x'), \quad (29)$$

гд е

$$\Pi (\mathbf{r}, \mathbf{r}'; \omega) = (2\pi)^{-1} \int_{-\infty}^{+\infty} d\omega' G_{\sigma}(\mathbf{r}, \mathbf{r}'; \omega') G_{\sigma}(\mathbf{r}', \mathbf{r}; \omega' - \omega)$$
(30)

— поляризационный оператор системы, а G_{σ} — причинная функция Грина злектронов твердого тела со спином σ .

В рамках модели «желе» с резкой границей для поляризационного оператора системы кристалл-вакуум часто используют выражение (см. обзор ⁵⁸)

$$\Pi(x, x') \equiv \Pi(x, x'; \mathbf{q}; \omega) = \theta(x \cdot x') [\Pi_{\infty}(|x + x'|) + \Pi_{\infty}(|x - x'|)],$$
(31)

где $\theta(x)$ — ступенчатая функция Хевисайда, Π_{∞} — поляризационный оператор бесконечной среды, равный для однородного кристалла

$$\Pi_{\infty}(x) \equiv \Pi_{\infty}(x; \mathbf{q}; \omega) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}k_x}{2\pi} e^{ik_x x} \frac{k_x^2 + q^2}{2\pi} (\epsilon_l (k_x, \mathbf{q}; \omega) - 1); \qquad (32)$$

здесь ξ_l (**k**; ω) — продольная диэлектрическая проницаемость среды (для вакуума $\xi_l = 1$ в $\Pi_l = 0$). Приближение (31) соответствует зеркальному отражению электронов металла от его поверхности ^{59,60} и хорошо описывает как спектр поверхностных плазмонов ⁶¹⁻⁶³, так и проникновение электромагнитного поля в металл ^{64,65}.

Впервые решение уравнения (29) в рамках «зеркального» приближения (31) получил Романов⁶¹⁻⁶³; в области $x, x' \ge 0$ оно имеет вид

$$D(x, x'; \mathbf{q}; \omega) = 2\pi q^{-1} \{ \exp(-q \mid x - x' \mid) - -g(\mathbf{q}; \omega) \exp[-q(x + x')] \}, \quad (33)$$

где функция отклика полубесконечной среды

$$g(\mathbf{q}; \ \omega) = \frac{\in_{\mathbf{S}}(\mathbf{q}; \ \omega) - 1}{\in_{\mathbf{S}}(\mathbf{q}; \ \omega) + 1}, \ \in_{\mathbf{S}}^{-1}(\mathbf{q}; \ \omega) = \frac{q}{\pi} \int_{-\infty}^{+\infty} dk_{\mathbf{x}} \left[(k_{\mathbf{x}}^2 + q^2) \in_{l} (k_{\mathbf{x}}, \ \mathbf{q}; \ \omega) \right]^{-1}$$
(34)

полностью описывает ее поверхностные свойства, а полюса функции $g(\mathbf{q}; \boldsymbol{\omega})$ определяют спектр поверхностных коллективных возбуждений.

Функция Грина $D(\mathbf{r}_1, \mathbf{r}_2; \boldsymbol{\omega})$ определяет энергию электростатического взаимодействия двух зарядов Q_1 и Q_2 , расположенных в точках \mathbf{r}_1 и \mathbf{r}_2 вблизи поверхности твердого тела:

$$E(\mathbf{r}_1, \mathbf{r}_2) = Q_1 Q_2 D(\mathbf{r}_1, \mathbf{r}_2; \omega = 0).$$
 (35)

В частности, полагая в приближении Томаса – Ферми

$$\in_l (k) = 1 + \frac{\varkappa^2}{k^2}, \quad \in_{\mathbf{S}} (q) = \frac{(q^2 + \varkappa^2)^{1/2}}{q},$$
(36)

где \varkappa^{-1} — длина экранирования в объеме металла ($\varkappa^{-1} \leq 1$ Å), из (33)—(35) получаем энергию электростатического взаимодействия двух адатомов, расположенных на расстоянии *R* друг от друга:

$$E_{\text{el.stat}}(R) = Q^2 \left\{ R^{-1} - \int_0^\infty dq J_0(qR) \exp(-2qa) \varkappa^{-2} \left[(q^2 + \varkappa^2)^{1/2} - q \right]^2 \right\} = (37)$$

$$\approx Q^{2} [R^{-1} - (R^{2} + 4a^{2})^{-1/2}], \qquad a \gg \pi^{-1}, \qquad (37a)$$

$$= 2Q^{2}\varkappa^{-2}R^{-3}[1-(1+\varkappa R)\exp(-\varkappa R)], \quad a=0.$$
(376)

Отсюда следует, что на малых расстояниях $R \leq (a + \varkappa^{-1})$ между адатомами действует кулоновское отталкивание $E_{\text{el.stat}}(R) \sim R^{-1}$, а на больших $R \gg (a + \varkappa^{-1})$ — диполь-дипольное отталкивание:

$$E_{dip-dip}(R) = 2p^2 R^{-3}, \tag{38}$$

где

$$p = Q (a + \varkappa^{-1})$$
 (39)

— дипольный момент адатома. Формула (38) впервые была приведена в работах ^{1,66,67}. Отметим, что при отличной от нуля концентрации адатомов $N_{\rm A}$ изменение работы выхода подложки определяется формулой Гельмгольца:

$$\Delta \Phi = -4\pi p N_{\rm A}.\tag{40}$$

Типичные значения энергии электростатического взаимодействия при хемосорбции щелочных и щелочно-земельных атомов на поверхности переходных металлов составляют 0,05—0,5 эВ на расстояниях нескольких постоянных решетки. Подробные данные о величинах дипольных моментов для различных хемосорбционных систем будут приведены в следующей главе.

Если в формуле (34) использовать для объемной диэлектрической проницаемости $\epsilon_l(k)$ более точное выражение⁶⁸, учитывающее коновскую аномалию при $k = 2k_F$, то помимо диполь-дипольного пьедестала (38) энергия электростатического взаимодействия будет иметь также осциллирующую фриделевскую составляющую $E_{\rm Friedel}$. Поскольку фурье-компоненты потенциала убывают с расстоянием *a* как ехр (-2ka) (см. (33)), а за фриделевские осцилляции ответственны импульсы с $k = 2k_F$, то в амплитуду фриделевской составляющей будет входить малый множитель $\exp(-4k_Fa)^{69}$. Для случаев, когда ПФ подложки имеет перпендикулярные поверхности плоские или цилиндрические участки, амплитуда осцилляции убывает с расстоянием R как R^{-1} или R^{-2} соответственно^{11, 70,71}. Заметим, однако, что в случае сферической ПФ описанное «зеркальное» приближение приводит к ошибочной асимптотике $E_{\rm Friedel} \sim R^{-3,71,72}$. Это связано с тем, что определяемый выражением (31) поляризационный оператор П (x, x') не обращается в нуль на поверхности x = x' = 0, как должно быть согласно его определению (30).

2.5. Прямое взаимодействие адатомов. Когда адатомы А и В располагаются на подложке так близко, что начинают перекрываться их орбитали $\Phi_{\rm A}$ и $\Phi_{\rm B}$, то вступает в действие прямой механизм взаимодействия. Он принципиально ничем не отличается от взаимодействия, приводящего к образованию химической связи в молекулах. Напомним, что в изолированной молекуле (например, типа Н₂) имеются связывающая, $\Phi_+ \sim \Phi_A + \Phi_B$, и антисвязывающая, $\Phi_- \sim \Phi_A - \Phi_B$ ор-битали. Выигрыш энергии, пропорциональный интегралу перекрытия $T(R) = \langle \Phi_{\rm A} \mid H \mid \Phi_{\rm B} \rangle$, обусловлен тем, что заполнена электронами только обладающая меньшей энергией орбиталь Ф₊. Прямое взаимодействие приводит к притяжению, спадающему с расстоянием R по экспоненте: $E(R) \sim T(R) \sim \exp(-\alpha R)$, где α^{-1} порядка размеров адатома. Очевидно, что прямое взаимодействие будет существенным только при близких к монослойному покрытиях, когда начинают перекрываться электронные оболочки адатомов. Для учета прямого взаимодействия в использованной выше модели необходимо добавить в гамильтониан (7) член $T(R) c_A^* c_B + \mathfrak{d}$. с. При приближении молекулы к поверхности дискретные уровни изолированной молекулы превращаются в виртуальные, которые заполнены электронами только до уровня Ферми є_г (рис. 3). Вследствие этого, во-первых, частично заполняется антисвязывающая орбиталь и опустошается связывающая, а вовторых, на составляющих молекулу атомах появляется заряд $Q \neq 0$, приводящий к их отталкиванию. Поэтому энергия связи атомов в молекуле уменьшается при адсорбции, причем тем сильнее, чем больше величины Δ и $Q^{26,33,73}$, т. е. чем сильнее ионная или ковалентная связь молекулы с подложкой. Для адсорбции молекулы H_2 этот вопрос был исследован с помощью модели Андерсона в работе ⁷⁴ и в рамках модели «желе» в работе ⁷⁵. Отметим, однако, что для получения количественных результатов, как и при расчете энергий химических связей в изолированных молекулах, необходим учет корреляционных эффектов 76

Другие механизмы взаимодействия адатомов (упругое, ван-дер-ваальсово) приводят к энергии, которая, как правило, более чем на порядок меньше по величине, чем рассмотренные выше. Поэтому они могут быть существенны только для физадсорбированных пленок; эти взаимодействия

Рис. 3. Формирование электронного спектра при прямом взаимодействии адатомов

рассмотрены в обзоре Эйнштейна². Отметим только, что упругое взаимодействие приводит к отталкиванию, энергия которого спадает с расстоянием как $R^{-377-79}$.

2.6. В за и модействие атомов, адсорбированных на поверхности полупроводника, принципиально не отличаются от рассмотренных выше. При хемосорбции на полупроводниках велика, как правило, ковалентная составляющая энергии адсорбции; поэтому должна быть велика и энергия непрямого взаимодействия адатомов через валентные орбитали атомов подложки. Поскольку уровень электрохимпотенциала полупроводника лежит в запрещенной зоне, то энергия E_{ind} (R) быстро (экспоненциально) спадает с расстоянием R между адатомами. Однако если на поверхности полупроводника есть зона ПЭС, которую пересекает уровень электрохимпотенциала, то непрямое взаимодействие должно носить дальнодействующий осциллирующий характер (E_{ind} (R) ~ $R^{-\mu}$; $\mu \leq 2$)³⁵. Отметим, что именно непрямым взаимодействием через зону ПЭС можно, в частности, объяснить существование структуры (7 × 7) на реконструированной грани (111) кремния (см. главу 4).

Если адатомы имеют ненулевой заряд Q, то между ними будет существовать электростатическое взаимодействие. Отличительной особенностью полупроводника, по сравнению с металлом, является малая концентрация электронов проводимости n, что приводит к большой величине радиуса экранирования \varkappa^{-1} ($\varkappa = (4\pi n e^2/\epsilon_0 k_B T)^{1/2}$ для невырожденного и $\varkappa = (6\pi n e^2/\epsilon_0 \epsilon_F)^{1/2}$ для вырожденного электронного газа), а также наличие статической диэлектрической проницаемости $\epsilon_0 = \epsilon (k \sim \varkappa_0) > 1$ ($\varkappa_0^{-1} - \mu$ радиус внутренней оболочки атома подложки). Используя для объемной диэлектрической проницаемости выражение

$$\epsilon(k) = \epsilon_0 \left(1 + \frac{\varkappa^2}{k^2}\right), \tag{41}$$

можно показать, что диполь-дипольное отталкивание

$$E_{\rm dip-dip}(R) = 2p^2 R^{-3}, \quad p = Q\left(a + \frac{1}{\varkappa_{\epsilon_0}}\right)$$
 (42)

действует только на больших расстояниях между адатомами $R \gg (\varkappa \in_0)^{-1} \gg a$, в то время как в ближней зоне $R \ll (\varkappa \in_0)^{-1}$, размеры которой при

 $n < 10^{19}$ см⁻³ превышают десятки ангстрем, адатомы отталкиваются по кулоновскому закону⁸⁰

$$E_{\text{el.stat}}(R) \approx \frac{2Q^2}{R(\epsilon_0 + 1)}.$$
(43)

2.7. Взаимодействие атомов в адсорбированной пленке.

2.7.1. Непарность взаимодействия. Очевидно, что взаимодействие адатомов неаддитивно, тем более что во взаимодействии всегда принимает участие подложка. Например, при адсорбции трех атомов энергия их взаимодействия E_{ijk} не равна сумме парных взаимодействий: $E_{ijk} - (E_{ij} + E_{jk} + E_{ki}) = \Delta E_{ijk} \neq 0$. Расчеты, проведенные в приближении сильной связи, показали ^{28,81–83}, что для непрямого механизма взаимодействия величина непарности «тройного» (trio) взаимодействия может быть как больше, так и меньше нуля, и для атомов, занимающих соседние адсорбционные центры, может достигать по амплитуде энергии парного взаимодействия. Естественно, что значение ΔE_{ijk} существенно зависит от электронной структуры подложки. Учет тройного взаимодействия необходим для объяснения, например, образования структуры (2 × 2) при степени покрытия $\theta = 0,75$ в адсорбционных системах Н и О/W (110)⁸⁴. В то же время энергией более высоких взаимодействий («четверных» и т. п.) можно пренебречь ^{2,82}.

Еще более важным оказывается учет тройных взаимодействий для расчета плотности электронных состояний адсистемы⁸¹. Отметим, что функция Грина для упорядоченной решетки адатомов при степени покрытия $\theta = N_A/N_S$ (N_A — концентрация адатомов, N_S — концентрация поверхностных адцентров) определяется выражением⁸⁵

$$\widetilde{G}_{\mathbf{A}}(\varepsilon) = N_{\mathbf{A}}^{-1} \sum_{\mathbf{x}} \left(\varepsilon - \varepsilon_{\mathbf{A}} - \theta \sum_{\mathbf{q}} V^2 G_{\mathbf{S}}^{\gamma}(\mathbf{x} + \mathbf{q}; \varepsilon) \right)^{-1}, \qquad (44)$$

где суммирование по \varkappa проводится по двумерной зоне Бриллюэна решетки адатомов, \mathbf{q} — вектор обратной решетки адатомов, причем вектор $\varkappa + \mathbf{g}$ должен находиться в пределах двумерной зоны Бриллюэна чистой подложки. Функция Грина для неупорядоченной адпленки в приближении Т-матрицы (вариант приближения среднего поля) была найдена в работах^{86–88}. Использование полученных результатов для моделирования системы H/Pt (111) показало^{87,88}, что в этой системе основным является непрямой механизм взаимодействия, причем при покрытиях $\theta > 0,5$ непарность взаимодействия играет важную роль.

Отметим, что непарность взаимодействия возникает также и из-за рассматриваемой ниже взаимной деполяризации адатомов.

2.7.2. Деполяризация. До сих пор предполагалось, что параметры адатома ε_A и V, характеризующие его связь с подложкой, являются постоянными. Вместе с тем очевидно, что все рассмотренные выше механизмы взаимодействия будут приводить к изменению этих параметров. Например, уровень ϵ_{A} сдвигается в электростатическом поле второго адатома ($| \epsilon_A - \epsilon_F |$ уменьшается на величину $2p^2R^{-3}$), так что электростатическое взаимодействие приводит к взаимному уменьшению зарядов адатомов. Это явление, называемое «деполяризацией», приводит к отклонению зависимости $\Delta \Phi$ ($N_{\rm A}$) = $= -4\pi p N_{\rm A}$ от линейной. Оно известно со времен Ленгмюра⁴⁶; в рамках модели Андерсона эффекты деполяризации были рассмотрены в работах 54,89-91. Если адатом обладает узким виртуальным уровнем, расположенным вблизи уровня Ферми, то деполяризация может оказаться настолько сильной, что при сближении адатомов энергия их электростатического отталкивания будет уменьшаться. При этом, как показал Большов⁹², в адпленках с отталкиванием при повышении концентрации адатомов должен происходить фазовый переход первого рода.

К эффекту деполяризации приводят также прямой и непрямой механизмы взаимодействия^{93,94}. Причиной деполяризации в этом случае является обусловленное взаимодействием расщепление электронных уровней адатомов (см. рис. 3). Расщепление виртуального уровня эквивалентно эффективному уширению его, что приводит к такому же результату, как и смещение уровня по направлению к уровню Ферми. Совместное действие различных механизмов взаимодействия может приводить к более чем одному фазовому переходу первого рода при повышении концентрации адатомов, что наблюдается на эксперименте для многих систем.

2.7.3. Суперпозиция взаимодействий. При рассмотрении реальных адсистем обычно необходимо учитывать несколько механизмов взаимодействия, причем их совместное действие не сводится к простому суммированию энергий. Во-первых, одни из механизмов меняют параметры, определяющие энергию взаимодействия других; во-вторых, при расчете появляются интерференционные члены. Например, одновременный учет прямого и непрямого взаимодействий ^{24,26,31,33} приводит при $R \rightarrow \infty$ к дополнительному вкладу в энергию взаимодействия

$$E_{\text{direct}+\text{ind}} \sim T(R) R^{-2\nu} \sin (2k_F R + \varphi).$$
(45)

Наконец, на получение количественных результатов может претендовать только самосогласованный расчет. Вопрос о самосогласовании особенно важен при рассмотрении непрямого взаимодействия через зону ПЭС кристалла при конечном покрытии подложки адатомами. В этом случае адсорбированная пленка сдвигает зону ПЭС как из-за перетекания электронов из адатомов в подложку, так и из-за действия электростатического поля заряженной пленки. Сдвиг зоны ПЭС, в свою очередь, приводит к изменению двумерного импульса Ферми k_F, который определяет период осцилляции непрямого взаимодействия. Поэтому сравнительно аккуратно можно рассчитать полную энергию взаимодействия двух адатомов E_{int} только при адсорбции на подложках с простой электронной структурой — таких, как щелочные металлы или алюминий. Однако такие подложки малоинтересны как с практической, так и с теоретической точек зрения; к тому же для них мало экспериментальных данных. Несравненно больший интерес вызывают подложки со сложной электронной структурой, например переходные металлы. Хотя строгий расчет величины $E_{\rm int}$ в этом случае невозможен, изложенная выше теория дает ряд качественных выводов, позволяющих предсказать поведение и порядок величины различных вкладов в $E_{\rm int}$.

Как было показано выше, основными механизмами взаимодействия адсорбированных атомов являются непрямое, электростатическое и прямое, причем определяющими, по крайней мере для разреженных структур ($\theta < 0.5$), являются два первых. Прямое взаимодействие, по порядку величины равное $E_{\text{direct}} \sim T(R)$, необходимо учитывать только при больших покрытиях ($\theta > 0.5$), когда начинают перекрываться электронные оболочки адатомов.

Энергия электростатического взаимодействия

$$E_{\rm el.stat} \simeq 2p^2 R^{-3} + E_{\rm Friedel}, E_{\rm Friedel} \sim Q^2 \exp(-4k_{\rm F}a) R^{-\mu} \cos(2k_{\rm F}R + \phi)$$

определяется величиной дипольного момента адатомов $p = Q (a + \varkappa^{-1})$, которую можно независимо определить по (40) из экспериментально измеряемого изменения работы выхода $\Delta \Phi$.

Непрямое взаимодействие между адатомами является анизотропным и осциллирующим с периодом $\pi/k_{\rm F}$, причем амплитуда осцилляции

 $E_{\rm ind} \sim V^4 \rho_{\rm A} ~(\epsilon_{\rm F}) ~R^{-\mu}$

определяется величиной интеграла перекрытия орбиталей адатома и ближайших атомов подложки V, который пропорционален ковалентной составляющей энергии адсорбции, и плотностью электронных состояний виртуального уровня адатома ρ_A (ε_F) = (Δ_F/π) [$(\tilde{\varepsilon}_A - \varepsilon_F)^2 + \Delta_F^2$]⁻¹. Определяющей в зависимости E_{ind} (R) является электронная структура подложки, поэтому, когда непрямое взаимодействие преобладает, разные адатомы на одной и той же подложке должны образовывать одинаковые (или близкие) структуры. При наличии ПЭС или уплощенных участков на поверхности Ферми подложки непрямое взаимодействие является дальнодействующим ($\mu \leq 2$). Более того, в ближней зоне, размеры которой определяются величиной $R_A \sim \rho_A$ (ε_F), амплитуда осцилляции E_{ind} (R) спадает с R медленнее, чем в дальней.

Из сказанного ясно, что при адсорбции атомов щелочных металлов, обладающих большим положительным дипольным моментом $p \ge 1$ ат. ед. $(\varepsilon_A - \varepsilon_F \approx \Delta)^1$, основным является электростатический механизм взаимодействия адатомов, а при адсорбции газов (H, O), когда дипольный момент мал,— непрямой механизм. Сравним теперь вклад различных механизмов взаимодействия при адсорбции атомов щелочных и шелочно-земельных металлов. Если для атома щелочного металла (Z = 1) заряд $Q \approx 1$ достигается при $\varepsilon_A - \varepsilon_F \gg \Delta$, то для атома щелочно-земельного металла (Z = 2) заряд Q = 1 достигается при $\varepsilon_A = \varepsilon_F$. Поэтому при одинаковой величине энергии диполь-дипольного отталкивания величина E_{ind} для щелочноземельных атомов должна быть больше, чем для щелочных. Очевидно, что еще более существенным непрямой механизм должен быть при взаимодействии адсорбированных атомов редкоземельных и переходных металлов.

В следующем разделе обзора проанализируем на основе этих выводов имеющиеся экспериментальные данные.

3. Экспериментальные исследования взаимодействия между адсорбированными атомами. Взаимодействие между адатомами оказывает влияние на многие свойства адсорбированных слоев, и изучение каждого из этих свойств в принципе может быть использовано для получения информации о взаимодействии. Исследования корреляции во взаимном расположении мигрирующих по поверхности адатомов (опыты проводятся в автоионном проекторе) и структуры адсорбированного слоя (при помощи дифракции медленных электронов) позволяют получить сведения о зависимости энергии взаимодействия адатомов от их взаимного расположения на поверхности. Исследования концентрационной зависимости теплоты адсорбции⁹⁵ или формы фронта диффузионного распределения⁹⁶ позволяют получить сведения о характере (преобладании сил притяжения или отталкивания) межатомного взаимодействия, сдвиг и расщепление линий в фононном или электронном спектре адсорбированного слоя указывают лишь на наличие взаимодействия. Мы рассмотрим сведения о взаимодействии между адатомами, полученные только с помощью наиболее информативных методов автоионной микроскопии и дифракции медленных электронов.

Наиболее подробно будут описаны эксперименты по адсорбции на двух плотноупакованных гранях ОЦК-кристалла — (110) и (112). Эти грани качественно различны: потенциальный рельеф грани (110) является гладким в атомном масштабе, а грани (112) — бороздчатым (энергия активации диффузии адатома вдоль бороздки в направлении [111] значительно меньше, чем поперек бороздок). Сильная анизотропность взаимодействия адатомов на бороздчатых гранях делает их, как будет показано ниже, уникальным объектом для экспериментального изучения дальнодействующего характера взаимодействия.

3.1. И с с л е д о в а н и я с п о м о щ ь ю а в т о и о н н о й микр о с к о п и и. Основным достоинством автоионного проектора является возможность наблюдения за поведением отдельных адатомов, хотя сильные рабочие поля ограничивают круг возможных адсорбатов атомами тугоплавких металлов. Миграцию этих адатомов удобнее всего исследовать на плотноупакованных гранях, в частности, на вольфрамовом острие — на гранях (110) и (112). На поверхности вершины острия имеются относительно большие участки плотноупакованных граней с совершенной атомной структурой. Атомы тугоплавких металлов мигрируют по ним с заметной скоростью при довольно низких температурах, при которых еще не наблюдаются смещения поверхностных атомов подложки. Кроме того, на границах плотноупакованных граней существуют потенциальные барьеры³⁷, отражающие мигрирующие адатомы, так что при достаточно низких температурах адатомы длительное время не выходят за пределы этих граней. При этом на гладких гранях каждый адатом мигрирует по всей поверхности, а на бороздчатых — лишь вдоль атомной бороздки, в которую он был первоначально адсорбирован.

Эксперимент проводится следующим образом. На поверхность выбранной грани на очищенной десорбцией полем вершине острия конденсируется один или несколько атомов. После этого многократно повторяются циклы, включающие в себя нагрев острия в течение определенного времени до некоторой температуры без приложенного поля и охлаждение острия до рабочей температуры автоионного проектора (при которой подвижность адатомов подавлена) с последующей подачей рабочего напряжения и фотографированием автоионного изображения. Статистическая обработка полученного набора положений адатомов, реализующихся в результате случайных блужданий, дает сведения о миграционных характеристиках адатомов и о взаимодействии между ними. Точность этой информации определяется максимально возможным числом наблюдений, которое сильно зависит от вакуумных условий в экспериментальном приборе, так как адсорбция даже одной молекулы остаточного газа на исследуемой грани может сильно повлиять на поведение исследуемых адатомов. Обычно удается провести до 1000 наблюдений " Их хватает для довольно точного определения миграционных характеристик отдельного адатома или параметров взаимодействия между адатомами на небольших (≤10 Å) расстояниях. Для получения надежных сведений о взаимодействии между адатомами на больших расстояниях с учетом возможной анизотропии взаимодействия это число наблюдений оказывается недостаточным 99.

Для большинства исследованных пар адатомов (состоящих из одинаковых или разных атомов) наблюдается глубокий минимум энергии взаимодействия при их расположении на соседних адсорбционных центрах в одной бороздке на грани W (112)¹⁰⁰ или на соседних адсорбционных центрах на грани W (110). Энергия связи адатомов при этом достигает нескольких десятых долей электронвольта; на грани W (110) было исследовано несколько видов адатомов и обнаружена зависимость этой энергии от вида адатомов чем сильнее связь адатомов с подложкой, тем слабее межатомная связь в паре (рис. 4^{101,102}). Для адатомов рения вместо притяжения наблюдается отталкивание, что объясняется, по-видимому, преобладанием диполь-дипольного отталкивания адатомов. Для двух адатомов кремния наиболее глубокий минимум энергии взаимодействия (~0,05 эВ) на грани W (110) наблюдается при их расположении на центрах, удаленных друг от друга на расстояние **4,47** Å вдоль направления [110] ⁹⁹. При этом адатомы кремния взаимодействуют, по-видимому, через ненасыщенные ¹⁰³ d-орбитали подложки симметрии e_{o} .

В° многоатомных кластерах на грани W (110) адатомы тугоплавких металлов обычно располагаются на соседних адсорбционных центрах и образуют двумерные островки¹⁰². Таким же образом ведут себя и адатомы рения, т. е. в многоатомных кластерах взаимодействие адатомов рения на соседних адсорбционных центрах отличается от их взаимодействия в паре. Адатомы платины и иридия в многоатомных кластерах образуют линейные цепочки, вытянутые вдоль направления [111] на поверхности. Если адатомов иридия больше, чем может вместить одна цепочка, они образуют несколько линейных цепочек, расположенных на довольно больших (>10 Å) одинаковых расстояниях¹⁰². Упорядочение взаимного расположения этих цепочек обусловлено, по-видимому, дальним взаимодействием адатомов иридия. Аналогичные эффекты наблюдаются в цепочечных структурах адатомов на грани W (112) и будут подробно рассмотрены ниже, в разделе 3.3. Адатомы кремния образуют на грани W (110) упорядоченную структуру (2×1), в которой межатомное расстояние в направлении [110] составляет 4,47 Å **п** соответствует наиболее глубокому минимуму энергии взаимодействия двух адатомов кремния, а в направлении [100] — 6,33 Å(положение второго минимума энергии взаимодействия двух адатомов кремния)⁹⁹, т. е. в этом случае структура адсорбированного слоя хорошо согласуется с характеристиками взаимодействия двух адатомов кремния.

Интересные результаты получены при исследовании взаимодействия между адатомами, находящимися в соседних бороздках на грани W (112).

Рис. 4. Изменение энергии взаимодействия адатомов, расположенных на соседних адсорбционных центрах на грани W (110), в ряду 5d-переходных металлов¹⁰². Надписями WRe и TaIr обозначены соответственно энергии взаимодействия адатомов вольфрама и рения, тантала и иридия. Штриховая линия—изменение энергии активации поверхностной диффузии одиночных адатомов¹¹³, отражающее изменение энергии связи адатомов с подложкой

Такие адатомы при встрече образуют связанную пару, которая мигрирует по поверхности путем попеременного смещения адатомов на одну постоянную решетки подложки вдоль бороздок. При этом пара занимает три положения относительно атомов подложки: линия, соединяющая адатомы, либо перпендикулярна направлению бороздок («прямая» пара), либо составляет угол ± 58° с этим направлением («косые» пары, рис. 5). В этой простой ситуации имеющегося числа наблюдений оказалось достаточно для получения довольно точных сведений о межатомном взаимодействии в паре. Были использованы результаты четырех опытов — результаты: 1) изучения миграции одиночных адатомов, позволяющего получить сведения о глубине потенциального рельефа поверхности для одного адатома; 2) изучения миграции пар, позволяющего получить сведения об изменении глубины потенциального рельефа поверхности из-за взаимодействия адатомов; 3) изучения вероятности наблюдения «прямых» и «косых» пар, позволяющего оценить отличие их энергий связи; 4) изучения термического распада пар, позволяющего получать сведения об энергии связи в «косой» паре. В результате для адатомов вольфрама ⁹⁹ и рения ^{104,105} были определены энергии взаимодействия в «прямой» и «косой» парах, а также в промежуточном состоянии, когда один из адатомов пары находится на вершине потенциального барьера, разделяющего «прямую» и «косую» пары. В обоих случаях энергия взаимодействия адатомов немонотонным образом зависит от расстояния между ними (рис. 6). По абсолютной величине энергии взаимодействия адатомов вольфрама и рения составляют 0,1—0,3 эВ. У адатомов иридия на грани W (112) наблюдаются только «прямые» пары¹⁰⁵. В пределах точности эксперимента не было зарегистрировано взаимодействие между адатомами в соседних бороздках грани W (112), смещенными друг относительно друга на две или больше постоянных решетки вдоль бороздок 105 , а также между адатомами в соседних бороздках грани W (321) (расстояние между бороздками

Рис. 5. Три ориентации связанной пары адатомов, находящихся в соседних бороздках грани W(112), относительно атомов подложки. *a* – Автоионные изображения. *б* – Модели расположения адатомов на подложке

Рис. 6. Зависимость энергии взаимодействия двух адатомов вольфрама ⁹⁹ (светлые кружки) или рения¹⁰⁵ (темные кружки), находящихся в соседних бороздках на грани W(112), от величины их взаимного смещения (в постоянных решетки подложки) в направлении вдоль бороздок

7,08 Å) или через одну бороздку на грани W (112)¹⁰⁶. Следует также отметить, что образование связанных пар из адатомов родия, находящихся в соседних бороздках, было обнаружено и на грани (110) родия, обладающего ГЦК-решеткой ¹⁰⁷.

Наиболее надежные сведения о взаимодействии между адатомами на относительно больших (порядка 10 Å) расстояниях на грани W (110) получены в работе¹⁰⁸, в которой исследовалось взаимодействие между разнородными адатомами, причем температура подложки подбиралась таким образом, чтобы один адатом (W, Re) оставался неподвижным, а второй (Pd) мигрировал по поверхности. На рис. 7 приведена полученная гистограмма расстояний между адатомами W и Pd, показывающая, что взаимодействие

Рис. 7. Диффузия адатома палладия в окрестности вольфрамового адатома на грани W(110)¹⁰⁸. *а* — Распределение мест, на которых был обнаружен адатом палладия во время диффузии, *б* — Гисто-грамма

между адатомами носит осциллирующий характер. Однако следует отметить, что практикуемое обычно представление результатов исследования взаимодействия между адатомами на грани W (110) в виде зависимости количества наблюдаемых событий или энергии взаимодействия от расстояния между адатомами, игнорирующее возможную анизотропию взаимодействия, является не вполне корректным.

3.2. Исследования с помощью дифракции мед-ленных электронов. Гладкие грани. При заданной концентрации адатомов структура адсорбированной пленки определяется характеристиками взаимодействия адатомов, симметрией и глубиной потенциального рельефа подложки, а также ее температурой. Если наиболее сильным взаимодействием между адатомами является прямое взаимодействие, то уже при малых покрытиях возникают плотные двумерные (а в случае, когда энергия взаимодействия между адатомами превышает энергию их взаимодействия с подложкой, — трехмерные) островки адсорбата ². Если во взаимодействии между адатомами преобладают относительно медленно спадающие с расстоянием электростатическое и непрямое взаимодействия, то при увеличении покрытия 9 на поверхности наблюдается последовательность упорядоченных двумерных структур адсорбированных атомов. Изучение этих структур (их симметрии и характеристик термического разупорядочения), а также строения адсорбированной пленки при промежуточных покрытиях дает возможность получить сведения о взаимодействии между адатомами. Особый интерес представляет получение и изучение наиболее разреженных упорядоченных структур, так как из их исследования можно получить сведения о взаимодействии между адатомами на больших расстояниях, которые практически недоступны другим экспериментальным методам. Возможность образования разреженных структур сильно зависит от глубины потенциального рельефа подложки, определяющего подвижность адатомов. Из всех энергетически выгодных структур за реальные времена могут реализоваться лишь те, в которых при температурах ниже темпера-

туры перехода порядок-беспорядок адатомы обладают достаточной для упорядочения подвижностью. При этом для экспериментальной реализации наиболее разреженных упорядоченных структур в пленках, обладающих высокой подвижностью, необходимо обеспечить охлаждение подложки до возможно более низких температур.

Исследования миграции одиночных адатомов в автоионном микроскопе (см., например, обзор¹¹³) подтвердили интуитивные представления о том, что наименьшей глубиной потенциального рельефа обладают плотноупакованные грани: грань (110) ОЦК-кристалла, грани (111) и (100) ГЦК-кристалла, а также — в направлении вдоль бороздок — грани (112) ОЦК-кристалла и (110) ГЦК-кристалла. В ГПУ-кристаллах наиболее «гладкими» должны быть, по-видимому, грани (0001) и (1010) (вдоль бороздок). Глубина потенциального рельефа должна зависеть и от характера связи адатома с подложкой. Поскольку ковалентная связь сильно локализована, то для адсорбатов с такой связью потенциальный рельеф должен быть глубже, чем для адсорбатов с преимущественно ионной связью. Для металлических адсорбатов глубина потенциального рельефа подложек должна, по-видимому, увеличиваться по мере увеличения роли ковалентной составляющей в адсорбционной связи, т. е. при переходе от щелочных к щелочно-земельным и редкоземельным адсорбатам, а в пределах одной группы — увеличиваться с уменьшением размеров адатома.

Адсорбционная связь щелочных и щелочно-земельных адатомов с плотлоупакованными гранями тугоплавких металлов обладает сильной полярностью, и соответственно в этих пленках важную, часто основную, роль играет изотропное диполь-дипольное отталкивание адатомов. При малых покрытиях в этих пленках образуются последовательно упорядоченные двумерные решетки адатомов, в которых адатомы располагаются на максимально возможных (при данной концентрации и геометрии расположения потенциальных ямок на поверхности) расстояниях 114-123. В работе 124 было проведено математическое (методом Монте-Карло в модели решеточного газа) моделирование перехода порядок-беспорядок в пленке натрия на грани W (110) при относительной степени покрытия $\theta = 0.25$ и показано, что упорядоченная структура пленки натрия соответствует наблюдаемой экспериментально ¹¹⁴ структуре с (2 imes 2), а дипольный момент адатома, который следует ввести в расчет для совмещения расчетной и экспериментальной температурных зависимостей интенсивности дополнительного рефлекса, с точностью 10 % совпадает с дипольным моментом адатома натрия при этой концентрации, определенным по формуле (40) из изменения работы выхода поверхности.

Приведенные факты говорят о том, что диполь-дипольное отталкивание действительно является основным видом межатомного взаимодействия в пленках щелочных и щелочно-земельных элементов на гладких гранях тугоплавких металлов при малых покрытиях. Однако детальное сравнение структуры пленок одних и тех же адсорбатов (Na, Sr, Ba) на гранях W (110) и Мо (110), обладающих практически идентичной атомной структурой поверхности, показало^{122,123}, что на этих подложках адатомы при малых покрытиях образуют различные последовательности упорядоченных структур, т. е. наряду с диполь-дипольным взаимодействием между адатомами действует зависящее от природы подложки слабое анизотропное взаимодействие, из-за которого определенные квазигексагональные структуры становятся более предпочтительными. Авторы^{122,123} предположили, что этим дополнительным взаимодействием взаимодействием елементов на структуры станование структуры взаимодействием адатомов является непрямое.

Более отчетливо непрямое взаимодействие адатомов на гладких гранях тугоплавких металлов проявляется в пленках редкоземельных элементов и актиноидов. Так, в пленках лантана и тория на грани W (110)^{125,126} уже при малых покрытиях наблюдается рост островков соизмеримых структур, состоящих из таких же, как в рассмотренной выше структуре (2×1) кремния на грани W (110) ⁹⁹, линейных цепочек адатомов, вытянутых вдоль направления [110]. Взаимное расположение цепочек в этих структурах довольно сложное и изменяется при дальнейшем уплотнении пленок, но сами цепочки остаются неизменными почти во всей области субмонослойных покрытий лантана и тория.

Адсорбционная связь адатомов водорода и кислорода с поверхностями плотноупакованных граней тугоплавких металлов носит ярко выраженный ковалентный характер. Соответственно роль диполь-дипольного взаимодействия адатомов в этих пленках незначительна, а основную роль в межатомном взаимодействии играет, по-видимому, непрямое взаимодействие. Из-за большой глубины потенциального рельефа подложек обычно реализуется лишь несколько наиболее плотных структур адсорбированных пленок ¹²⁷⁻¹³¹, анализ которых указывает на сильно анизотропный характер взаимодействия ¹³².

3.3. Исследования с помощью дифракции медленных электронов. Бороздчатые грани.

3.3.1. Результаты эксперимента. К настоящему времени структура адсорбированных пленок наиболее подробно исследована на бороздчатых

_			
	Li	$p(1\times4) p(1\times3) p(1\times2) p(1\times1)=M$	133
	Na	p(1 × 2) M	134
	ĸ	c(2×2) M	135
	Cs	<u>c(2 × 2)</u> M	136
112	Mg	(3x3) M	137
X	Sr	p(1x7) c(2x2) M	138
	Ba	(2×6) $c(2 \times 2)$ M	139
	La	1 p(1x 7) c(2x2) c(2x4/3)=M	140,141
	Gd	$\frac{1}{2}p(1\times7)$ $c(2\times2)$ M	142
	Dy	p(1 x 7) c(2 x 2) M	143
	Li	p(1x4) p(1x2) OHC0.66 p(1x1)=M	144
	Na	p(1x4) p(1x2) M	145
Ξ	K	c(2x2) M	146
β	Cs	c(2x2) M	147
	Sr	p(1x9) p(1x5) (4x2) M	148,149
	Ba	p(1, x, 5) (4, x, 2) M	150
-	La	c(2×2) c(2×4/3)=M	151
		pfix2)fix_3/21fi	150
	LI	UHL067 M2	1.52
		$p(1 \times 3) = p(1 \times 2) = p(1 \times 4/3) = M_1$	152
100	Na	$(2 \times 3) = (2 \times 2) = 12$	1.52
e(1)	K	tt M	153
Ĩ		p(1x3) = p(1x2)	15/
	Mg		1.54
	Sr		154
	Ba		150
	La		155

Рис. 8. Схемы структурных переходов в пленках электроположительных элементов на гранях W(112), Mo(112) и Re(1010) при 77 К (в пленках Na и Cs на грани W(112) при 300 К). Вертикальными стрелками обозначены покрытия, при которых появляются дополнительные рефлексы, жирными линиями области фазовых перехолов первого рода, горизонтальными стрелками - области одномерного сжатия адсорбированных пленок. В остальных областях субмонослойных покрытий пленки состоят из статистических смесей ячеек. ОНС - одномерно-некогерентная структура, М — монослой, в — относительное покрытие, равное отношению концентрации адатомов к концентрации поверхностных атомов подложки. В правой части рисунка указаны ссылки на литературу

гранях W (112), Mo (112) и Re (1010). На всех этих гранях структура верхнего атомного слоя практически идентична, постоянная решетки a_1 в направлении поперек бороздок равна 4,47 Å на вольфраме, 4,45 Å на молибдене и 4,45 Å на рении, а постоянная решетки a_2 в направлении вдоль бороздок — 2,74 Å на вольфраме, 2,73 Å на молибдене и 2,76 Å на рении. Имеющиеся в настоящее время сведения о структуре субмонослойных пленок щелочных, щелочно-земельных и редкоземельных элементов на этих подложках све-

дены на рис. 8. Можно отметить следующие особенности структуры адсорбированных пленок на бороздчатых гранях:

1. Во многих системах при малых покрытиях адатомы образуют линейные цепочки, перпендикулярные направлению бороздок (рис. 9).

2. Наиболее разреженные структуры, состоящие из линейных цепочек адатомов, в большинстве систем при малых покрытиях растут в виде островков на фоне еще более разреженных покрытий. Рефлексы от этих структур по-

являются на дифракционных картинах при намного меньших, чем стехиометрическая, концентрациях и вплоть до достижения стехиометрической концентрации происходит увеличение их яркости (рис. 9).

3. В области средних покрытий во многих системах также наблюдаются фазовые переходы первого рода, при этом чаще всего растут островки структур с (2×2) или р (1×2) с $\theta = 0.5$.

4. В пленках лития, натрия и магния на грани Re (1010) в некоторых областях концентраций наблюдается по две последовательности структурных состояний. Связано это, по-видимому, с тем, что на грани Re (1010) имеются разделенные атомными ступеньками участки поверхности с различным расположением атомов второго слоя относительно атомов первого слоя (рис. 10). На этих участках у атомов верхнего слоя разное число ближайших соседей, сильно (вдвое) отличается глубина атомных бороздок. Естественно, структура адсорбированных пленок на этих участках может быть различной.

Детальное рассмотрение структурных особенностей позволяет сделать определенные выводы относительно взаимодействия между адсорбированными атомами на бороздчатых гранях.

3.3.2. Образование линейных цепочек адатомов. Для образования лиSr/W(112)

ð=0

3=0,10

Рис. 9. Дифракционные картины системы Sr/W(112) при различных относительных покрытиях **θ и модель решетки р (1 × 7)** стронция ¹³⁸

нейных цепочек адатомов при малых покрытиях необходимо, чтобы между адатомами в этих цепочках действовали силы притяжения. Так как щелочные, щелочно-земельные и редкоземельные адсорбаты характеризуются значительной полярностью адсорбционной связи, то между адатомами действует довольно сильное диполь-дипольное отталкивание. Кроме того, диаметр большинства адатомов (за исключением Cs) меньше величины a_1 , вследствие чего перекрытие электронных оболочек адатомов, приводящее к прямому взаимодействию, мало. Поэтому факт образования цепочек говорит о том, что между адатомами осуществляется непрямое взаимодействие, превышающее их диполь-дипольное отталкивание. Из того факта, что адатомы натрия образуют линейные цепочки на одной из поверхностей на грани Re (1010) и не образуют на другой, можно сделать вывод, что абсолютные величины энергий диполь-дипольного отталкивания и непрямого притяжения соседних адатомов в цепочках в этой системе близки. Это позволяет оценить величину энергии непрямого взаимодействия щелочных адатомов:

 $E_{\rm ind}(a_1) \approx -2p_{\rm Na}^2 a_1^{-3} \approx -0.05$ 3B.

Основной причиной отсутствия линейных цепочек адатомов в некоторых системах является слишком сильное диполь-дипольное отталкивание либо, как для системы La/Mo (112), начинающийся с малых покрытий рост остров-ков структуры с (2×2).

Поскольку грани W (112), Мо (112) и Re (1010) имеют практически идентичную геометрию поверхности, то можно считать, что на всех трех гранях диполь-дипольное взаимодействие в цепочках одинаково при одном и том же дипольном моменте адатома p (см. таблицу). Из таблицы видно, что линейные цепочки адатомов в пленках щелочно-земельных элементов образуются при намного больших начальных дипольных моментах адатомов, чем в пленках щелочных элементов. Так, адатомы калия не образуют линей-

Рис. 10. Модель структуры поверхности грани (1010) рения

ных цепочек ни на одной из исследованных подложек, а адатомы стронция образуют цепочки на всех подложках, хотя дипольный момент стронция на грани Re (1010) (~4,4 дебая) значительно больше дипольного момента адатома калия на грани Mo (112) (~3,3 дебая). Отсюда можно сделать вывод, что энергия непрямого взаимодействия в случае щелочно-земельных адатомов больше, чем в случае щелочных, и можно оценить ее величину:

$$E_{\rm ind}(a_{\rm i}) \leqslant -2p_{\rm Sr}^2 a_{\rm i}^{-3} \approx -0.3$$
 3B.

Кроме непрямого, к притяжению между адатомами может приводить фриделевская составляющая электростатического взаимодействие $E_{\rm Friedel} \sim Q^2 \exp\left(-4k_{\rm F}a\right)$ (см. раздел 2.4). Так как однозарядные щелочные ионы имеют электронные оболочки, близкие к оболочкам инертных газов, а однозарядные

щелочно-земельные ионы — к оболочкам щелочных атомов, то расстояние а адатомов от поверхности в случае щелочных адатомов должно быть меньше, чем в случае щелочно-земельных. Об этом свидетельствует также меньшая ширина виртуальных уровней щелочно-земельных адатомов по сравнению с щелочными. При одинаковой величине дипольного момента (как, например, в случае калия и стронция на грани W (112)) щелочные адатомы, следовательно, должны иметь большие заряды Q и меньшие величины a, т. е. энергия | $E_{\rm Friedel}$ |для щелочных адатомов должна быть больше, чем для щелочно-земельных. Поскольку на эксперименте наблюдается противоположная ситуация, ясно, что притяжение между адатомами в цепочках обусловлено именно непрямым механизмом взаимодействия адатомов.

Рост островков плотных субмонослойных покрытий более сильно выражен в пленках щелочно-земельных и редкоземельных элементов. Этот эффект также, по-видимому, обусловлен непрямым взаимодействием адатомов.

3.3.3. Взаимодействие между цепочками адатомов. Рост островков наиболее разреженных структур, состоящих из линейных цепочек адатомов, означает, что цепочкам энергетически выгодно располагаться на том расстоянии, которое реализуется в разреженной структуре, т. е. на этом расстоянии имеется минимум потенциала взаимодействия адатомов. В некоторых системах экспериментально наблюдается еще один минимум потен-

Грань	Адсорбат	q₀, 9B	р₀, дебай	наличие линейных цепочек	N
W (112)	Li Na K Cs Mg Sr Ba La Gd Dy	$\begin{array}{c} 2,8 \\ 133 \\ 2,55 \\ 156 \\ 2,7 \\ 135 \\ 3,15 \\ 157 \\ 2,5 \\ 137 \\ 3,6 \\ 138 \\ 4,5 \\ 139 \\ 5,7 \\ 141 \\ 5,5 \\ 142 \\ 4,7 \\ 143 \end{array}$	$\begin{array}{c} 1,7 133 \\ 1,9 156 \\ 3,7 135 \\ 4,0 157 \\ 0,6 137 \\ 3,7 138 \\ 4,4 139 \\ 2,5 131 \\ 1,8 142 \\ 1,6 143 \end{array}$	Есть Есть Нет Нет Есть Есть Есть Есть Есть	2 2 7 7 7 7 7 7 7 7 7
Mo (112)	Li Na K Cs Sr Ba La	2,65 144 2,3 145 2,5 146 2,8 147 3,25 149 4,25 150 5,85 151	1,4144 1,7145 3,3146 3,6147 2,9149 3,6150 1,8151	Есть Есть Нет Нет Есть Есть Нет	4; 2 4; 2 9; 5 5
Re (1010)	Li Na K Mg Sr Ba La	$\begin{array}{c} 2,95 \\ 152 \\ 2,65 \\ 152 \\ 2,9 \\ 153 \\ 2,7 \\ 154 \\ 3,7 \\ 154 \\ 4,8 \\ 150 \\ 5,5 \\ 155 \end{array}$	$\begin{array}{c} 1,7 \ {}^{152} \\ 1,8 \ {}^{152} \\ 3,7 \ {}^{153} \\ 1,5 \ {}^{154} \\ 4,4 \ {}^{154} \\ 5,1 \ {}^{150} \\ 1,9 \ {}^{155} \end{array}$	Есть Есть/нет Нет Есть Есть Нет Есть	$\begin{vmatrix} 2\\ -\\ 3\\ 4\\ -\\ 2 \end{vmatrix}$

Начальные теплота адсорбции адатома q_0 и дипольный момент p_0 , а также наличие линейных цепочек адатомов при малых покрытиях и расстояния между ними (в постоянных решетки a_2), соответствующие минимумам потенциала взаимодействия для электроположительных адсорбатов на бороздчатых гранях W, Mo и Re (1 дебай=10⁻¹⁸ CGSE = = 0,394 ат. ед.)

циала взаимодействия адатомов на меньших расстояниях между цепочками. Существование его проявляется в том, что при покрытиях, превышающих стехиометрическое покрытие разреженной структуры, наблюдается либо рост островков более плотной структуры, состоящей из линейных цепочек адатомов, либо переход от разреженной структуры к более плотной (от структуры $p(1 \times 9)$ к структуре $p(1 \times 5)$ в пленках стронция на грани Мо (112)) путем статистического смешивания ячеек этих структур без образования промежуточных структур. Наличие двух минимумов явно указывает на то, что энергия взаимодействия цепочек осциллирует при изменении расстояния между ними.

Наблюдаемые в различных системах положения минимумов взаимодействия цепочек адатомов представлены в таблице. Из нее видно, что в пленках щелочно-земельных и редкоземельных элементов минимумы потенциала взаимодействия цепочек адатомов обнаруживаются на значительно больших расстояниях между цепочками, чем в пленках щелочных элементов. Если этот результат проанализировать таким же образом, как это было сделано выше при рассмотрении образования линейных цепочек адатомов, то становится очевидным, что во взаимодействии между линейными цепочками адатомов также основную роль играет непрямой механизм взаимодействия. Минимумы потенциала взаимодействия цепочек определяются в результате суперпозиции непрямого и электростатического механизмов взаимодействия.

Представленные в таблице данные свидетельствуют о том, что положение минимумов потенциала взаимодействия цепочек для одного и того же

TTom

адсорбата сильно изменяется при переходе от одной подложки к другой и в то же время слабо изменяется для различных адсорбатов на одной и той же подложке. В последнем случае положение минимумов отличается не более чем на одну постоянную решетки подложки, причем большее расстояние наблюдается у адсорбатов, имеющих больший дипольный момент. Таким образом, экспериментально подтверждается вывод теории об определяющей роли электронной структуры подложки в непрямом взаимодействии адатомов.

Отметим, что поверхность Ферми вольфрама и молибдена имеет уплощенные участки в направлении [111] (вдоль бороздок). Наличие на поверхности адсорбированного слоя не изменяет электронную структуру объемных состояний, но может, в принципе, существенно изменить энергию (и

Рис. 11. Схематическое изображение термических возбуждений в цепочечной структуре адсорбированного слоя

соответственно форму линии Ферми) поверхностных состояний как за счет сдвига всей зоны ПЭС, так и за счет изменения симметрии поверхности (изменения поверхностной зоны Бриллюэна). Если предположить, что вклад ПЭС в энергию E_{ind} для рассмотренных систем велик, представленные в таблице данные можно интерпретировать либо как указание на то, что в случае достаточно разреженных структур влияние адсорбированного слоя на ПЭС еще относительно мало, либо это влияние примерно одинаково для всех адсорбатов. Разрешить этот вопрос могло бы исследование взаимодействия отдельных адатомов, которое для этих адсорбатов в настоящее время не представляется возможным, либо самосогласованные расчеты адсистем методом

В работе 221 было обнаружено образование линейных цепочек адатомов в пленке кислорода на бороздчатой грани (110) серебра. Однако между этими це-почками действуют лишь силы отталкивания, которые монотонно уве-

личиваются по мере уменьшения межцепочечного расстояния, так что при увеличении концентрации кислорода последовательно наблюдаются структуры р (1 \times 6), р (1 \times 5), р (1 \times 4), р (1 \times 3) и р (1 \times 2). Такой характер межцепочечного взаимодействия в системе O/Ag (110) обусловлен, вероятно, близкой к сферической формой поверхности Ферми серебра.

3.3.4. Термическое разупорядочение цепочечных структур¹⁵⁸. Одним из наиболее удивительных свойств структур, состоящих из линейных цепочек адатомов, является их высокая термическая устойчивость. При любом механизме взаимодействия энергия взаимодействия отдельных адатомов на тех больших расстояниях, на которых располагаются соседние цепочки в таких структурах (до 9 постоянных решетки подложки), должна быть довольно малой. Тем не менее линейные сверхструктуры разупорядочиваются при температурах порядка сотен градусов. Эта особенность поведения линейных сверхструктур связана с тем, что слабое взаимодействие в этих структурах осуществляется между адатомами, объединенными в прочные линейные цепочки. Термическими возбуждениями в этих структурах являются сместившиеся линии адатомов (рис. 11). При термическом возбуждении этих линий энергетически наиболее трудным является смещение из цепочки первого адатома — на это тратится энергия разрыва цепочки $2\varepsilon_0$ ($\varepsilon_0 \sim E_{int}$ (a_1)). Для смещения соседнего или каждого следующего адатома требуется значительно меньшая энергия ε_1 ($\varepsilon_1 \sim E_{int}$ (Na₂)), связанная с изменением взаимодействия сместившегося участка линии с соседними цепочками в расчете на один адатом линии. Длина смещенного участка растет до тех пор, пока общая энергия взаимодействия заключенных в нем адатомов с адатомами из соседних цепочек не станет равной $k_{\rm B}T$, т. е. средняя длина смещенного участка $l \sim a_1 k_{\rm B} T/\epsilon_1$. Среднее расстояние между сместившимися участками $L \sim a_1 \exp{(2\epsilon_0/k_{\rm B}T)}$ довольно велико. Разупорядочение пленки наступит в области температур, когда $L \sim l$; отсюда для оценки температуры разупорядочения T_c получается условие

$$k_{\rm B}T_{\rm c} \sim \varepsilon_{\rm i} \exp \frac{2\varepsilon_{\rm o}}{k_{\rm B}T_{\rm c}}$$
.

Характерной особенностью этого условия является то, что даже при $\varepsilon_1 \ll \varepsilon_0$ температура перехода T_c будет довольно большой.

В реальных адсорбированных пленках к этой простой картине добавляются еще два обстоятельства. Во-первых, подложка обладает потенциальным рельефом в направлении вдоль бороздок и для смещения адатома в этом направлении необходимо еще затратить энергию миграции. Экспериментально это обстоятельство проявляется в том, что имеется температура T_M, ниже которой упорядочение или разупорядочение адсорбированной пленки не может произойти в течение разумных времен. Во-вторых, поверхность не является идеальной — на ней имеются атомные ступеньки, примесные адатомы и т. д. Это обстоятельство накладывает ограничения на длину сместившегося участка l — он не может быть длиннее, чем среднее расстояние между неоднородностями на поверхности l_H. Вместе эти оба ограничения определяют минимальную величину ε_1 , при которой возможно упорядочение взаимного расположения цепочек $\varepsilon_{1 \min} \sim a_1 k_{\rm B} T_{\rm M} / l_{\rm H}$. Эта величина, тем не менее, значительно меньше величин энергии межатомного взаимодействия, обнаруживаемых другими методами, например с помощью автоионной микроскопии.

Таким образом, специфика тепловых возбуждений в структурах, состоящих из линейных цепочек адатомов, приводит к своеобразному «усилению» слабого взаимодействия между адатомами, находящимися в разных цепочках. Это обстоятельство делает цепочечные структуры уникальными объектами для исследования дальнего взаимодействия между адатомами.

4. Влияние межатомного взаимодействия на свойства адсорбционных систем. В предыдущем разделе было рассмотрено проявление различных механизмов взаимодействия между адатомами в образовании упорядоченных двумерных структур. В настоящей главе мы кратко опишем некоторые примеры, демонстрирующие влияние межатомного взаимодействия на другие свойства чистых поверхностей и поверхностей, покрытых адсорбированными пленками.

4.1. Перестройка структуры адсорбированнослоя. Теория предсказывает, что в некоторых системах при измене-ΓО нии внешних условий (например, приложенного внешнего поля) адсорбированный слой может перестраиваться с изменением симметрии. Для выяснения возможности перестройки обычно рассчитывают фононный спектр ω (q) для неперестроенной структуры взаимодействующих адатомов ^{159,1} Если для некоторого двумерного волнового вектора q* осуществляется условие $\omega(q^*) = 0$, то возвращающая в положение равновесия сила $F \sim \omega^2$ обращается в нуль и система становится неустойчивой относительно волнового вектора q^{*}. Вследствие этого должна возникнуть новая структура со сверхпериодом $a^* \approx 2\pi/q^*$, в общем случае несоизмеримая с периодом подложки, хотя может оказаться энергетически выгодней соизмеримая структура. Отметим, что кроме описанного «мягкого» возникновения неустойчивости в некоторых случаях неустойчивость может возникать «жестко», если при некотором значении q^* частота ω (q^*) становится комплексной с $\text{Re}\omega$ (q^*) > 0. Устойчивость структур значительно уменьшается для «мягких» (легко «деполяризующихся») адатомов, т. е. адатомов, имеющих узкий виртуальный электронный уровень ε_A , расположенный вблизи уровня Ферми ε_F . Тогда небольшой сдвиг ε_A , вызываемый взаимодействием между адатомами, смещением их перпендикулярно поверхности или внешним полем, приводит к большому изменению заполнения виртуального уровня и, следовательно, к изменению энергии взаимодействия адатомов. Например, решетка «мягких» диполей при повышении концентрации становится неустойчивой относительно смещений адатомов параллельно поверхности ¹⁶¹, хотя адатомы с постоянными диполями на гладкой подложке образуют устойчивую гексагональную решетку *).

Если адатомы неподвижны (модель решеточного газа), то решетка «мягких» диполей при достаточно большой их поляризуемости становится неустойчивой относительно образования структуры с (2×2) (или более сложных структур) с неоднородным распределением зарядов⁶⁶. Понижение энергии такой структуры обусловлено уменьшением кулоновского отталкивания диполей, пропорциональным амплитуде альтернации зарядов:

$$(Q + \Delta Q) (Q - \Delta Q) - Q^2 = - (\Delta Q)^2.$$

Устойчивость структур уменьшается также, если учесть возможность смещения адатомов перпендикулярно поверхности; в этом случае альтернация зарядов сопровождается альтернацией расстояний от адатома до поверхности^{163,164}. Если учесть кулоновское отталкивание электронов на адатоме, то перестройка может сопровождаться альтернацией локальных магнитных моментов^{165,166}. Отметим, что была исследована также устойчивость структур при учете непрямого^{167,168} и прямого¹⁶⁹ механизмов взаимодействия, а также роль приповерхностного изгиба зон в случае полупроводниковой подложки¹⁷⁰.

Если взаимодействие между адатомами имеет большую по амплитуде дальнедействующую фриделевскую составляющую, например, при наличии ПЭС, пересекающих уровень Ферми, то $q^* = 2k_{\rm F}$. Важно отметить, что в этом случае спектр электронных состояний, ответственных за возникновение фриделевских осцилляции, после перестройки должен «диэлектризоваться», т. е. в нем должна возникнуть энергетическая щель, разделяющая занятые и свободные электронные состояния. Поскольку при повышении температуры увеличивается затухание фриделевских осцилляции с расстоянием (14), то при некоторой критической температуре T_c перестройка адслоя должна исчезнуть. Такой обратимый по температуре фазовый переход называется пайерлсовским.

4.2. Реконструкция поверхности кристалла. Поскольку поверхностные атомы подложки принципиально ничем не отличаются от чужеродных хемосорбированных атомов, то и взаимодействие между атомами подложки в поверхностном слое отличается от их взаимодействия в объеме. Наиболее ярко это проявляется в реконструкции (т. е. перестройке с понижением симметрии) поверхностного слоя атомов. Реконструкции, которую легко обнаружить методом дифракции медленных электронов, подвержены многие поверхности металлов и полупроводников.

Среди переходных и благородных металлов наиболее часто наблюдается реконструкция поверхности иридия, платина и золота. На грани (100) этих металлов реконструкция охватывает верхний слой ¹⁷¹ — он приобретает близкую к гексагональной структуру, довольно сложным образом совмещенную с нижележащими слоями, и становится слегка (смещение атомов из плоскости ~ 0,4Å) волнистым ^{172,173}. Бороздчатые грани (110) иридия, пла-

^{*)} На гладкой подложке двумерная решетка адатомов может обладать только квазидальним порядком ¹⁶².

тины и золота в результате реконструкции приобретают структуру р (1 \times 2) 174-178

В ОЦК-металлах — вольфраме, молибдене и хроме — реконструируется грань (100) — при температурах ниже комнатной появляются рефлексы структуры с (2 × 2) (на грани Мо (100) возникает несоизмеримая структура с (2, 2 × 2,2))¹⁷⁹⁻¹⁸¹. С экспериментом наилучшим образом согласуется модель реконструкции, в которой две подрешетки атомов верхнего слоя, имеющие структуру с (2 × 2), смещаются друг навстречу другу вдоль одного из направлений [11] до образования плотноупакованных зигзагообразных цепочек атомов ¹⁸²⁻¹⁸⁶ (рис. 12). Реконструкция усиливается при адсорбции ма-

лых количеств водорода, но при монослойном покрытии адсорбированный водород восстанавливает нереконструированную структуру верхнего слоя.

Строгие самосогласованные расчеэлектронной структуры нереконты струированных граней (100) вольфраи молибдена ⁴⁴, результаты котома рых хорошо согласуются с результатами экспериментального исследования электронной структуры этих граней с помощью ультрафиолетовой фотоэлектронной спектроскопии с угловым разрешением ^{187,188}, показали, что на этих поверхностях имеются ПЭС с распределением электронной плотности типа d_{2x} и d_{2y}, зону которых пересе-кает уровень Ферми. На реконструированных поверхностях, как показывают расчеты^{189,190} и эксперимент^{191,192}, зоны этих ПЭС расщепляются с образованием запрещенной зоны вблизи

Рис. 12. Модель реконструкции грани W(100)¹⁷⁹. Штриховой линией показаны положения атомов верхнего слоя на нереконструированной поверхности, стрелками — направления смещения атомов при реконструкции

уровня Ферми. При этом энергия электронной подсистемы понижается. При адсорбции монослоя водорода ПЭС смещаются приблизительно на 1 эВ вниз по шкале энергий¹⁹³ и оказываются полностью ниже уровня Ферми. Этим можно объяснить тот факт, что монослойное покрытие водорода восстанавливает нереконструированную структуру верхнего слоя. Не наблюдается также реконструкции грани Та (100)¹⁹⁴, на которой зоны ПЭС не пересекаются уровнем Ферми¹⁹⁵. Приведенные факты говорят о том, что реконструкция граней (100) W и Мо происходит благодаря непрямому взаимодействию между поверхностными атомами через зону ПЭС. При этом и эксперимент²²², и теория²²³ показывают, что происходящий при повышении температуры переход от реконструированной к нереконструированной поверхности является фазовым переходом типа порядок-беспорядок (двумерным плавлением поверхностной сверхструктуры), а не переходом Пайерлса, как предполагалось ранее¹⁹⁶.

Чрезвычайно часто встречается реконструкция на поверхностях полупроводников ¹⁹⁷. Наиболее яркий пример — это реконструкция (7×7) грани (111) кремния. Поскольку на поверхности Si (111) есть зона ПЭС, расположенная в запрещенной зоне кристалла кремния, то естественно было предположить, что реконструкция происходит по пайерлсовскому механизму, обусловленному непрямым взаимодействием поверхностных атомов Si через зону ПЭС ¹⁹⁸. Однако эксперименты, выполненные с помощью электронной спектроскопии высокого разрешения, не обнаружили энергетическую щель, которая должна существовать в случае пайерлсовской реконструкции **199,200**. В последнее время с помощью туннельной микроскопии удалось выяснить строение элементарной ячейки реконструированной грани Si: ячейка (7×7) содержит 12 «холмов» и одну «яму»²⁰¹. Природа «холмов» до конца не выяснена (ими могут быть адсорбированные атомы кремния²⁰¹ пли пирамидки из четырех атомов кремния²⁰²); однако независимо от строения «холмов» между ними должно действовать непрямое взаимодействие через зону ПЭС. Накамура и др.²⁰³ показали, что полная энергия взаимодействия между «холмами» имеет минимум именно для структуры (7×7) , причем для расположения «холмов» в ячейке, которое совпадает с экспериментально наблюдаемым. При этом температурный переход $(7 \times 7) \rightarrow (1 \times 1)$ при $T_c \approx$ ≈ 1150 К можно объяснить тепловым разупорядочением (двумерным плавлением) структуры $(7 \gtrsim 7)$. Кроме этого, при изменении периода осцилляции непрямого взаимодействия, происходящего при изменении заполнения зоны ПЭС, минимум энергии взаимодействия обеспечивают последовательно стру-

Рис. 13. Концентрационные зависимости теплоты адсорбции бария на гранях (110)¹¹⁷ и (112)¹³⁹ кристалла вольфрама

ктуры $(2 \times 2) \rightarrow (7 \times 7) \rightarrow (5 \times 5)$. Изменить заполнение зоны ПЭС можно, адсорбируя на поверхности электроположительные атомы, которые отдают свои электроны в подложку. И действительно, в эксперименте для системы Sn — Ge (111) по мере повышения концентрации адатомов Sn наблюдается последовательность структур $(2 \times 8) \rightarrow (7 \times 7) \rightarrow (5 \times 5)$.

4.3. Термическая устойчивость адсорбированных пленок. Соотношение различных видов взаимодействия адатомов оказывает существенное влияние на концентрационные зависимости теплоты адсорбции. В системах, в которых основным видом межатомного взаимодействия является диполь-дипольное отталкивание адатомов, наблюдается резкое уменьшение теплоты адсорбции, начиная с самых малых покрытий¹. Непрямое взаимодействие адатомов, которое наиболее отчетливо проявляется на бороздчатых гранях, компенсирует диполь-дипольное отталкивание адатомов, вследствие чего спад теплоты адсорбции с покрытием заметно ослабляется ¹³⁹ (рис. 13). Это указывает на перспективность использо-

вания граней с бороздчатым атомным строением поверхности в качестве подложек при создании высокоэффективных металло-пленочных катодов, в которых адсорбированная пленка должна обладать высокой термической устойчивостью при больших покрытиях.

4.4. Работа выхода адсистем. Хорошо известно влияние взаимодействия адатомов на концентрационные зависимости работы выхода $\Phi(\theta)$ адсистем^{1,204}. Во-первых, оно заключается в отклонении зависимости $\Phi(\theta)$ от линейной из-за эффектов деполяризации (см. раздел 2). Во-вторых, при некотором покрытии θ_c , близком к монослойному, прямое взаимодействие между адатомами приводит к «металлизации» адпленки, т. е. к коллективизации электронов адатомов^{205, 206}. При покрытиях $\theta \ge \theta_c B$ адсистеме появляются плазменные моды, характерные для адпленки ^{207–210}, а работа выхода начинает приближаться к значению, соответствующему массивному образцу адсорбата. Интересно, что во многих системах при $\theta \approx \theta_c$ зависимость $\Phi(\theta)$ имеет минимум

4.5. Каталитическая активность поверхности. Гетерогенную каталитическую реакцию можно условно разбить на несколько

стадий: адсорбцию исходных молекул, их диссоциацию на составные части, миграцию отдельных атомов по поверхности катализатора до объединения в новые молекулы и, наконец, десорбцию продуктов реакции. Очевидно, что по крайней мере в трех стадиях — диссоциации, миграции и ассоциации взаимодействие между адсорбированными частицами играет основную роль. Следовательно, в свете вышеизложенного каталитическая активность поверхности должна определяться поверхностной плотностью электронных состояний вблизи уровня Ферми и локальными значениями электростатического потенциала около адсорбированных молекул.

Характеристиками поверхности, определяющими ее каталитическую активность, можно управлять как с помощью легирования объема катализатора, так и, причем даже более эффективно, с помощью легирования поверхности. Поверхностное легирование малыми количествами атомов щелочных металлов для увеличения каталитической активности по отношению к определенным реакциям называется промотированием и давно используется в промышленном гетерогенном катализе²¹¹. Действие промоторов обусловлено, по-видимому, как сдвигом зоны ПЭС за счет перетекания электронов с адатомов в подложку, так и сдвигом уровней молекул-реагентов за счет электростатического потенциала положительно заряженных щелочных адатомов ²¹², ²¹³.

Отметим, что обычно основное действие катализатора заключается в уменьшении энергии (и, следовательно, увеличении скорости) диссоциации исходных молекул (H_2 , O_2 , N_2 и т. д.) при их адсорбции на поверхности катализатора²¹⁴. Механизм этого эффекта был подробно рассмотрен в главе 2.

В последнее время на примере реакции диссоциации щелочно-галоидных соединений на поверхности металлов платиновой группы подробно исследован механизм пассивации («отравления») катализатора при адсорбции углерода. Оказалось, что благодаря сильному прямому взаимодействию между адатомами углерода они собираются в островки графитообразной структуры¹¹². Адсорбированная пленка, связанная с подложкой лишь слабыми силами Ван-дер-Ваальса²¹⁵, полностью перекрывает доступ реагентов к поверхности катализатора.

5. Заключение. Таким образом, главную роль во взаимодействии между хемосорбированными адчастицами играют: 1) электростатическое взаимодействие, основной составляющей которого является кулоновское или диполь-дипольное отталкивание адчастиц; 2) прямое взаимодействие, существенное только при близких к монослойным покрытиях; 3) непрямое взаимодействие, имеющее дальнодействующий осциллирующий характер, определяемый электронной структурой подложки.

Для щелочных адатомов, характеризующихся большой полярностью связи, основную роль играет электростатическое взаимодействие. Роль непрямого взаимодействия увеличивается при переходе от щелочных к щелочно-земельным, редкоземельным и переходным адатомам, а при адсорбции атомов простых газов оно играет основную роль. Возрастает также роль непрямого взаимодействия при переходе от гладких к бороздчатым или рыхлым в атомном масштабе поверхностям.

Отличие взаимодействия между адатомами от взаимодействия между примесными атомами в объеме твердого тела обусловлено: 1) наличием поверхностных квазичастиц (плазмонов, ПЭС и др.); 2) асимметрией эффектов экранировки; 3) отличием спектральной плотности квазичастиц на поверхности и в объеме. Кроме этого, на поверхности меньше энергия активации диффузии, вследствие чего взаимодействие легче проявляется во взаимном расположении адчастиц. Наконец, не последнюю роль играет и тот факт, что экспериментально наблюдать положение находящихся на поверхности адатомов легче, чем примесных атомов в объеме твердого тела.

Ряд вопросов, связанных со взаимодействием адчастиц, пока исследован недостаточно. Это взаимодействие между собой адатомов разных элементов, взаимодействие адчастиц со ступеньками и другими дефектами поверхности. Нет окончательного ответа на вопрос, играют ли поверхностные электронные состояния основную роль в непрямом взаимодействии адчастиц и в реконструкциях поверхностей. Отметим, что реконструкция поверхности имеет важное практическое значение, так как скорость поверхностной диффузии на реконструированной и нереконструированной поверхностях может отличаться на несколько порядков ²¹⁶. Известно также, что после перестройки поверхности пленки Pd или Pt, адсорбированной на ниобии или тантале, резко повышается скорость поглощения водорода^{217,218}.

С другой стороны, реконструкция поверхности, растворение адсорбата в подложке, химические реакции адсорбата с подложкой существенно усложняют структуру адсорбированных пленок и затрудняют выделение эффектов, связанных с взаимодействием между адатомами. Все это особенно присуще поверхностям полупроводников, вследствие чего взаимодействие между адатомами на них к настоящему времени экспериментально изучено слабо.

Наконец, важен вопрос о динамическом взаимодействии между движущимися (колеблющимися) адатомами, когда сказываются эффекты неадиабатичности и запаздывания в формировании отклика твердого тела

А. И. Волокитину, Выражаем благодарность Л. А. Большову, И. Н. Засимовичу, А. А. Корнышеву, И. Ф. Люксютову, А. Г. Наумовцу, Э. А. Пашицкому и А. Г. Федорусу за многочисленные обсуждения вопросов, затронутых в настоящей работе.

СПИСОК ЛИТЕРАТУРЫ

- ¹ БольшовЛ. А., НапартовичА. П., НаумовецА. Г., ФедорусА.Г. //УФН. 1977. Т. 122. С. 125. ² Einstein T. L.//CRC Crit. Rev. Sol. State and Mater. Sci. 1978. V. 7. P. 261.

- ³ R u d e r m a n M. A., K i t t e 1 C.//Phys. Rev. 1954. V. 96. P. 99.
 ⁴ F r i e d e 1 J.//Nuovo Cimento Suppl. 1958. V. 7. P. 287.
 ⁵ L a ng e r J.S., V o s k o S. H.//J. Phys. and Chem. Sol. 1959. V. 12. P. 196.
 ⁶ Can el E., M a t t h e w s M. P., Z i a R. K. P.//Phys. Condens. Mater. 1972. Can el E., M Bd 15. S. 191.

- ⁷ D a s A. K.//Sol. State Commun. 1974. V. 15. P. 475. ⁸ G r i m l e y T. B.//Proc. Phys. Soc. 1967. V. 90. P. 3, 751. ⁹ G r i m l e y T. B.//Ibidem. V. 92. P. 3, 776. ¹⁰ G r i m l e y T. B., W a l k e r S. M.//Surface Sci. 1969. V. 14. P. 395.

- ¹¹ Габович А. М.. Пашицкий Э. А.//ФТТ. 1976. Т. 18. С. 377.
 ¹² Lau K. H., Kohn W.//Surface Sci. 1978. V. 75. Р. 69.
 ¹³ Gurney R. W.//Phys. Rev. 1935. V. 47. Р. 479.
 ¹⁴ Einstein T. L., Schrieffer J. R.//Ibidem. Ser. B. 1973. V. 7. Р. 3629.
 ¹⁵ Браун О. М.//УФЖ. 1978. Т. 23. С. 1233.
 ¹⁶ Anderson P. W.//Phys. Rev. 1961. V. 124. P. 41.
 ¹⁷ Newns D. M.//Ibidem. 1969. V. 178. P. 1123.
 ¹⁸ Koutecky J.//Trans. Farad. Soc. 1958. V. 54. P. 1038.
 ¹⁹ Gadzuk J. W.//Surface Physics of Materials.— New York; San Francisco; London, 1975.—V. 2. P. 339.
 ²⁰ Grimley T. B.//Electron Structure and Reactions on Metallic Surfaces.—New York; London, 1976.—P. 113.
- York; London, 1976.-P. 113.
- ²¹ Muscat J. P., Newns D. M.//Prog. Surface Sci. 1978. V. 9. Р. 1. ²² Волокит и н А. И.//Проблемы физической химии поверхности полупроводников. — М.: Наука, 1978.—С. 44. ²³ Урбах М. И., Бродский А. М.//ЖФХ. 1985. Т. 59. С. 1152.
- 24
- ²⁴ Burke N. R.//Surface Sci. 1976. V. 58. P. 349.
 ²⁵ Schönhammer K., Hartung V., Brenig W.//Zs. Phys. Kl. B. 1975. Bd 22. S. 143.
- ²⁶ Lo Bosse J. C., Lopez J., Rousseau Violet J.//Surface Sci. 1978. V. 72. P. 125. 27
- Лифшиц Е. М., Питаевски й Л. П. Статистическая физика. Ч. 2.- М.: Наука, 1978
- ²⁸ Б p a y H O.M.//ΦΤΤ. 1980. Τ. 22. C. 2079.

- ²⁹ Johansson P.//Sol. State Commun. 1979. V. 31. P. 591.
- ³⁰ Einstein T. L.//Surface Sci. 1978. V. 75. P. 161L.

- ³¹ Браун О. М.//ФТТ. 1981. Т. 23. С. 2779.
 ³² Brodsky A. M., Urbakh M. I.//Surface Sci. 1981. V. 105. P. 196.
 ³³ Le Bosse J. C., Lopez J.//Ibidem. 1976. V. 58. P. 621.
 ³⁴ Lopez J., Le Bosse J.C., Rousseau Violet J.//J. Phys. Ser. C. 1982. V. 15. P. L1025.

- V. 15. Г. L1025. Волокитин А. И.//ФТП, 1979. Т. 13. С. 1648. Kalkstein D., Soven P.//Surface Sci. 1971. V. 26. P. 85. Allan G., Lenglart P.//Ibidem. 1972. V. 30. P. 641. Flores F., March N. H., Moore I. D.//Ibidem. 1977. V. 69. P. 133. Johansson P.//Sol. State Commun. 1978. V. 25. P. 221. Johansson P., Hjelmberg H.//Surface Sci. 1979. V. 80. P. 171.
- 40
- ⁴¹ Ho W., Cunningham S. L., Weinberg W. H., Dobrzynski L.// Phys. Rev. Ser. B. 1975. V. 12. P. 3027.
 ⁴² Foo E. N., Johnson L. G.//Surface Sci. 1976. V. 55. P. 189.
 ⁴³ Gov J. G. Smith J. P. Artling haves F. L/(Phys. Rev. Lett. 1977. V. 38.
- G a y J. G., S m i t h J. R., A r l i n g h a u s F. J.//Phys. Rev. Lett. 1977. V. 38.
- P. 561. ⁴⁴ Kerker G. P., Ho K. M., Cohen M. L.//Phys. Rev. Ser. B. 1978. V. 18. P.
- ^{5473.}
 ⁴⁵ Posternak M., Krakauer H., Freeman D. D., Koelling D. D.// Ibidem. 1980. V. 21. P. 5601.
 ⁴⁷ Langmuir I.//Ibidem. 1923. V. 22. P. 357.
 ⁴⁷ Tomonaga S.//Prog. Theor. Phys. 1950. V. 5. P. 544.
 ⁴⁸ Haldane F. D. M.//Phys. Rev. Ser. B. 1977. V. 15. P. 2477.
 ⁴⁹ Lucas A. A., Sunjic M.//Surface Sci. 1972. V. 32. P. 439.
 ⁴⁰ Lucas A.A.//Phys. Rev. Ser. B. 1971. V. 4. P. 2939.

- ⁵¹ Ritchie R. H.//Phys. Lett. Ser. A. 1972. V. 38. P. 189. ⁵² Hewson A. C., Newns D. M.//Japan. J. App. Phys. Suppl. 2, pt. 2. 1974. P. 121. 53
- ⁵³ Anda F., Ure J. E.//Surface Sci. 1979. V. 83. Р. 572. ⁵⁴ Браун О. М., Ильченко Л. Г., Пашицки й Э. А.//ФТТ. 1980. Т. 22. С. 1649. ⁵⁵ Браун О. М., Волокитин А. И.//ФТТ. 1981. Т. 23. С. 3530.
 ⁵⁶ Вгаип О. М., Volokitin A. I.//Surface Sci. 1983. V. 131. Р. 148.
 ⁵⁷ Lopez J., Le Bosse J. C.//Ibidem. 1981. V. 109. Р. 331.
 ⁵⁸ Kornyshev A. A., Vorotyntsev M. A.//Ibidem. 1980. V. 101. Р. 23.
 ⁵⁹ Wagner D.//Zs. Naturforsch. 1966. Bd 21a. S. 634.
 ⁶⁰ Сидякин А. В.//ЖЭТФ. 1970. Т. 58. С. 573.

- ⁶¹ Романов Ю. А.//ФТТ. 1963. Т. 5. С. 2988.
 ⁶² Романов Ю. А.//ЖЭТФ. 1964. Т. 47. С. 2119.
 ⁶³ Романов Ю. А.//Изв. вузов СССР. Сер. «Радиофизика». 1964. Т. 7. С. 242.
 ⁶⁴ Шафранов В. Д.//ЖЭТФ. 1958. Т. 34. С. 1475.
 ⁶⁵ Балкарей Ю. И., Сандомирски й В. Б.//ЖЭТФ. 1968. Т. 54. С. 808.
 ⁶⁶ Большов Л. А., Напартович А. П.//ЖЭТФ. 1973. Т. 64. С. 1404.
 ⁶⁷ Коhn W., Lau K. H.//Sol. State Commun. 1976. V. 18. Р. 553.
 ⁶⁸ Афанасьев А. М., Каган Ю.//ЖЭТФ. 1962. Т. 43. С. 1456.
 ⁶⁹ Вортынцев М. А., Корнышев А. А.//ЖЭТФ. 1980. Т. 78. С. 1008.
 ⁷⁰ Габович А. М., Ильченко Л. Г., Пашицкий Э. А., Романов Ю.А. //ЖЭТФ. 1978. Т. 75. С. 249.
- ⁷¹ G abovich A. M., Il'chenko L. G., Pashitskii E. A., Romanov Yu. A.//Surface Sci. 1980. V. 94. P. 179.
 ⁷² KpaBμoB B. E.//ΦΤΤ. 1979. T. 21. C. 1560.
 ⁷¹ Lopez J., Le Bosse J. C., Rousseau Violet J.//J. Phys. Ser. C. 1980.

- Кравцов В. Е.//ФП1. 19/9. 1. 21. С. 1560. ⁷¹ Lopez J., Le Bosse J. C., Rousseau Violet J.//J. Phys. V. 13. P. 1139. ⁷⁴ Takahashi Y.//J. Phys. Soc. Japan. 1977. V. 43. P. 1342. ⁷⁵ Johansson P. K.//Surface Sci. 1981. v. 104. P. 510. ⁷⁶ Hartung V.//Zs. Phys. Kl. B. 1979. Bd 32. S. 307. ⁷⁷ Lau K. H., Kohn W.//Surface Sci. 1977. V. 65. P. 607. ⁷⁸ Lau K. H.//Sol. State Commun. 1978. V. 28. P. 757. ⁷⁹ Lopez J., Allan G.//Surface Sci. 1981. V. 103. P. 456. ⁸⁰ Bopotынцев М. А., Корнышев А. А., Рубинштейн А СССР. 1979. Т. 248. С. 1321; 1980. Т. 255. С. 1288. (исправление опечатки) А. И.//ДАН
- ⁸¹ E instein T. L.//Phys. Rev. Ser. B. 1977. V. 16. P. 3411.
 ⁸² E instein T. L.//Surface Sci. 1979. V. 84. P. L479

⁸³ V 1 a e v S. Zh.//Commun. Depart. Chem. Bulgaria. 1984. V. 17. P. 507.

- ⁸⁴ Ching W. Y., Huber D. L., Laga II y M. G., Wang G. C.//Surface ScL 1978. V. 77. P. 550.
- Волокитнн А.И.//ФММ. 1980. Т. 50. С. Давыдов С. Ю.//ФТТ. 1978. Т. 20. С. 1998. 629
- ⁸⁷ Урбах М. И., Бродски й А. М.//Изв. АН СССР. Сер. физ. 1982. Т. 46. С. 2279. ⁸⁸ Урбах М. И., Бродски й А. М.//Поверхность. 1984. № 1. С. 27. ⁸⁹ Muscat J. P., Newns D. M.//Sol. State Commun. 1972. V. 11. P. 737. ⁹⁰ Muscat J. P., Newns D. M.//J. Phys. Ser. C. 1974. V. 7. P. 2630.

- ⁹¹ Давыдов С. Ю.//ФТТ. 1977. Т. 19. С. 3376.
 ⁹² Большов Л. А.//ФТТ. 1971. Т. 13. С. 1679.
 ⁹³ Давыдов С. Ю.//ФТТ. 1978. Т. 20. С. 1752.
 ⁹⁴ Давыдов С. Ю.//ФММ. 1979. Т. 47. С. 481.
 ⁹⁵ Ведула Ю С., Гаврилюк В. М.//УФЖ. 1958. Т. 3. С. 632.
 ⁹⁶ Nau movets A. G., Vedula Yu. S.//Surface Sci. Rep. 1984. V. 4. P. 365.
 ⁹⁷ Tsong T.T., Casonova R.//Phys. Rev. Ser. B. 1981. V. 24. P. 3063.
 ⁹⁹ Tsong T.T.//Surface Mobilities on Solid Materials. Fundamental Concepts and Applications/Ed. by Vu Thien Binh. —New Uork; London; Plenum, 1983.—P. 247.
 ⁹⁰ R e e d D. A., E h r l i c h G.//Surface Sci. 1985. V. 151. P. 143.

- ¹⁰¹ Bassett D. W.//Ibidem. 1975. V. 53. P. 74.
 ¹⁰² Bassett D. W.//⁹.-P. 83.
 ¹⁰³ Holmes M. W., Ingelsfield J. E.//Surface Sci. 1979. V. 89. P. 133.
 ¹⁰⁴ Stolt K., Graham W. R., Ehrlich G.//J. Chem. Phys. 1976. V. 65. P. 3206,
 ¹⁰⁵ Stolt K., Wrigley J. D., Ehrlich G.//Ibidem. 1978. V. 69. P. 1151.
 ¹⁰⁶ Graham W. R., Ehrlich G.//J. Chem. Phys. 1974. V. 32. P. 1309.
 ¹⁰⁷ Aurault G., Ehrlich G.//J. Chem. Phys. 1974. V. 60. P. 281.
 ¹⁰⁸ Fink H.W., Faulian K., Bauer E.//Phys. Rev. Lett. 1980. V. 44. P. 1008,
 ¹⁰⁹ Bauer E., Poppa H.//Thin. Sol. Films. 1972. V. 12. P. 167.
 ¹⁰⁹ Bauer E., Poppa H., Todd G., Bonczek F.//J. App. Phys. 1974. V. 45, P. 5164. P. 5164.
- Ваиег Е., Рорра Н., Тоdd G., Davis P.R.//Ibidem. 1977. V. 48. Р. 3773. Зандберг Э. Я., Тонтегоде А. Я., Юсифов Ф. К.//ЖТФ. 1971. Т 112
- 41. C. 2420.
- Ваѕѕе́ tt D. W.//⁹⁹.-Р. 63. Медведев В. К., Наумовец А. Г., Федорус А. Г.//ФТТ. 1970. Т. 12. 114 C. 375. 115
- 116
- 117
- Gerlach R. L., Rhodin T. N.//Surl'ace Sci. 1969. V. 17. P. 32. Fedorus A. G., Naumovets A. G.//Ibidem. 1970. V. 21. P. 426. Fedorus A. G. Naumovets A. G., Vedula Yu. S.//Phys. Stat. Sol. Ser. a. 1972. V. 13. P. 445.
- Ап de r sson S., Jostell U.//Sol. State Commun. 1973. V. 13. Р. 829. Канаш О. В., Наумовец А. Г., Федорус А. Г.//ЖЭТФ. 1974. Т. 67. С. 1818
- 120 Наумовец А. Г., Федорус А. Г.//ЖЭТФ. 1975. Т. 68. С. 1183.
- ¹²¹ Gorodetsky D. A., Melnik Yu. P.//Surface Sci. 1977. V. 62. P. 647. ¹²² Наумовец А. Г., Федорус А. F.//Acta Univers. Bratisl. 1979. V. 33. No. 471. P. 59.
- 123 4/1. г. 39. Ведула Ю. С., Гончар В.В., Наумовец А. Г., Федорус А. Г.// ФТТ. 1977. Т. 19. С. 1569. Медведев В. К., Яковкин И. Н.//Ibidem. С. 1587. 124
- 125
- Пончар В. В., Канаш О. В., Федорус А. Г.//Поверхность. 1983. № 6. С.39. Наумовец А. Г., Федорус А. Г.//По-я Всесоюзная конференция по эмиссион-ной электронике: Краткие содержания докладов.— Махачкала: Управполиграфиздат 126
- СМ ДАССР, 1976.-Ч. 1. С. 9. Roelofs L. D., Kortan A. R., Einstein T. L., Park R. L.//J. Vac. Sci. 128
- анд Technol. 1981. V. 18. Р. 492. Christmann K., Behm R. J., Ertl G., van Hove M. A., Wein-berg W. H.//J. Chem. Phys. 1979. V. 70. Р. 4168. Гончар В. В., Канаш О. В., Наумовец А. Г., Федорус А. Г.//Письма
- ЖЭТФ. 1978. Т. 28. С. 358.
 Гончар В. В., Каган Ю. М., Канаш О. В., Наумовец А. Г., Федорус А. Г.//ЖЭТФ. 1983. Т. 84. С. 249.
- Гончар В. В., Канаш О. В., Федорус А. Г.//Письма ЖЭТФ. 1983. Т. *38*.
- C. 162. ¹³² Williams E.D., Cunningham S. L., Weinberg W. H.//J. Vac. Sci. and Technol. 1978. V. 15. P. 417.

- 133 Medvedev V. K., Naumovets A. G., Smereka T. P.//Suriace Sci., 1973. V. 34. P. 368. 134

- С h e n J.M., P ap ag e o r g o p o u l o s C. A.//Ibidem. 1970. V. 21. P. 377. Медведев В. К., Якивчук А. И.//ФТТ. 1974. Т. 16. С. 981. Chen J.M., P ap ag e o r g o p o u l o s C. A.//J. Vac. Sci. and Technol. 1972. V. 9. P. 570. 136 137
- 138
- Медведев В. К., Погорелый В. Н.//УФЖ. 1980. Т. 25. С. 1524. Медведев В. К., Якивчук А. И.//УФЖ. 1975. Т. 20. С. 1900. Медведев В. К., Смерека Т. П.//ФТТ. 1973. Т. 15. С. 724. Медведев В. К., Погорелы й В. Н., Якивчук А. И.//Письма ЖЭТФ. 1976. Т. 24. С. 489.
- ¹⁴¹ Ведула Ю. С., Медведев В. К., Наумовец А. Г., Погорелы Й В.Н. //УФЖ. 1977. Т. 22. С. 1826.
 ¹⁴² Гончар Ф. М., Медведев В. К., Смерека Т. П., Гупало М. С., Бабкин Г. В.//Физика поверхности твердых тел: Тезисы докладов Всесоюзного семинара. Киев, ноябрь 1983.—Киев: Наукова думка, 1983.— С. 57.
 ¹⁴³ Гончар Ф. М., Смерека Т. П., Бабкин Г. В., Палюх Б. М.//18-я Все-семинара. Киев, сомерека Т. П., Бабкин Г. В., Палюх Б. М.//18-я Все-симара. С. 57.
- союзная конференция по эмиссионной электронике: Тезисы докладов.-М.: Наука,
- союзная конференция по эмиссионной электропике. Тезпев докладов. Ил. 1981. С. 73.
 ¹⁴⁴ Гупало М. С., Медведев В. К., Палюх Б. М., Смерека Т. П.//ФТТ. 1979. Т. 21 С. 973.
 ¹⁴⁵ Гупало М. С., Медведев В. К., Палюх Б. М., Смерека Т. П.//ФТТ, 1980. Т. 22. С. 3201.
 ¹⁴⁶ Гупало М. С.//Ibidem. С. 2311.
 ¹⁴⁷ Гупало М. С., Медведев В. К., Палюх Б. М., Смерека Т. П.//ФТТ, 1980. Т. 23. С. 2076.
 ¹⁴⁸ Мелвелев В. К., Яковкин И. Н.//ФТТ. 1978. Т. 20. С. 928.

- ¹⁴⁸ Медведев В. К., Яковкин И. Н.//ФТТ. 1978. Т. 20. С. 928.
 ¹⁴⁹ Медведев В. К., Яковкин И. Н.//ФТТ. 1979. Т. 21. С. 321.
 ¹⁵⁰ Медведев В. К., Яковкин И. Н.//ФТТ. 1981. Т. 23. С. 669.
- ¹⁵¹ Лозовы Й Я. Б., Медведев В. К., Смерека Т. П., Бабкин Г. В., Палюх Б. М.//ФТТ. 1982. Т. 24. С. 2130.
 ¹⁵² Лозовый Я. Б., Медведев В. К., Смерека Т. П.//Поверхность. 1985.
- №8.C.24.
- ¹⁵³ Лозовы й Я. Б.//ФТТ. 1982. Т. 24. С. 2655.

- ¹⁵⁴ Лозовый Я. Б.//ФТТ. 1982. Т. 24. С. 2655.
 ¹⁵⁴ Медведев В. К., Яковкин И.Н.//Поверхность. 1982. № 5. С. 112.
 ¹⁵⁵ Лозовый Я. Б., Медведев В. К., Смерека Т. П.. Бабкин Г. В., Палюх Б. М.,//ФТТ. 1984. Т. 26. С. 1215.
 ¹⁵⁶ Медведев В. К., Смерека Т. П.//ФТТ. 1973. Т. 15. С. 1641.
 ¹⁵⁷ Vedula Yu. S., Копорlev Yu. М., Меdvedev V. К., Naumovets A.G., Smereka T.P., Fedorus A.G./Troc. of the 3th Intern. Conference on Thermionic Power Generation. Jülich, FRG, 1972. Р. 1353.
 ¹⁵⁸ Люксютов И. Ф., Медведев В. К., Яковкин И. Н.//ЖЭТФ. 1981.
 ¹⁵⁹ Trullinger S.E. Сиппіляват S.I. // Ррус. Рау. Lett. 1073. V. 20. Р. 012.

- ¹⁵⁹ Trullinger S.E., Cunningham S.L.//Phys. Rev. Lett. 1973. V. 30. P. 913. ¹⁶⁰ Fasolino A., Santoro G., Tosatti E.//Ibidem. 1980. V. 44. P. 1684.
- 161 Тарасенко А.А., Томчук П.М., Чумак А.А.//ФТТ. 1978. Т. 20. C. 1213. 162
- Люксютов И.Ф.//УФЖ. 1983. Т. 28. С. 1281. 163
- Кравцов В.Е., Мальшуков А.Г.//ЖЭТФ. 1978. Т. 75. С. 691.
- Кравцов В. Е., Мальшуков А.Г.//ЖЭТФ. 1979. Т. 77. С. 180. Давыдов С.Ю.//ФТТ. 1979. Т. 21. С. 2283. 165

- ¹⁶⁶ Волокитин А. И., Карпушин А. А.//Ibidem. С. 3576.
 ¹⁶⁷ Волокитин А. И., Карпушин А. А.//Ibidem. 1980. Т. 22. С. 2319.
 ¹⁶⁸ Волокитин А.И.//ФТП. 1981. Т. 15. С. 2136.
 ¹⁶⁹ Большов Л. А., Ве щунов М. С.//Поверхность. 1982. Л° 1. С. 35.
 ¹⁷⁰ Большов Л. А., Ве щунов М. С.//ЖЭТФ. 1986. Т. 90. С. 569.

- ¹⁷¹ Norton P. R., Davies J. A., Jackson J. P., Matsunami N.//Surface Sci. 1979. V. 85. P. 269.
 ¹⁷² Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Koestner R. J., Stair P. C., Biberian J. P., Van Hove M. A., Van Hove M. A.
- Kesmodel L. L., Bartos I., Somorjai G. A.//Ibidem. 1981. V. 103. P. 189.
- ¹⁷³ Van Hove M.A., Koestner R.J., Stair P.C., Siberian J. P., Kesmodel L.L., Bartos, I., Somorjai G.A.//Ibidem. P. 218. ¹⁷⁴ Bonce I H.P., K u R.//J. Vac. Sci. and Technol. 1972. V. 9. P. 663. ¹⁷⁵ Christmann K., Ert I G.//Zs. Naturforsch. 1973. Bd 28a. S. 1144. ¹⁷⁶ Moritz W., Wolf D.//Surface Sci. 1979. V. 88. P. L29.

- 177 Chan C. M., van Hove M.A., Weinberg W.H., Williams E.D.//Sol. State. Commun. 1979. V. 30. P. 47.
- Chan C.M., van Hove M.A., Weinberg W.H., Will iams E.D.//Sur-face Sci. 1980. V. 91. P. 440. Debe M.K., King D.A.//Ibidem. 1979. V. 81. P. 193. Felter T.E., Barker R.A., Estrup P.J.//Phys. Rev. Lett. 1977. V. 38. P. 179
- 1138
- Gewinner G., Peruchetti J.C., Jaegle A., Riedinger R.//Ibidem 1979. V. 43. P. 935. Barnes M.R., Will is R.F.//Ibidem. 1978. V. 41. P. 1729. Barker R.A., Estrup P.J., Jona F., Marcus P.M.//Sol. State Commun. 1978. V. 25. P. 375. 182

- Stensgaard I., Feldman L.C., Silverman P.J.//Phys. Rev. Lett. 1979. V. 42. P. 247.

- ¹⁸⁷ W i 1 l i s R.F.//Surface Sci. 1979. V. 89. P. 457.
 ¹⁸⁶ K i ng D.A.//Phys. Scripta. 1983. V. 4. P. 34.
 ¹⁸⁷ W e ng S.L., G u stafsson T., Plummer E.W.//Phys. Rev. Lett. 1977. ¹⁸⁷ Weng S.L., C V. 39 P 822
- ¹⁸⁸ Weng S.L., Plummer E.W., Gustaffsson T.//Phys. Rev. Ser. B. 1978.
 V. 18. P. 1718. 189
- Bullett D.W., Stephenson P.C.//Sol. State Commun. 1983. V. 45. P. 47. Bullett D.W., Stephenson P.C.//Surface Sci. 1984. V. 139. P. 1. 190
- Campuzano J.C., King D.A., Somerton C., Ingelsfield J.E.// Phys. Rev. Lett. 1980. Y. 35. P. 1237.
- 192
- Terakura I., Terakura K., Hamada N.//Surface Sci. 1981. V. 103. P. 103

- 103
 ¹⁹³ Kerker G.P., Yin M.T., Cohen M.L.//Phys. Rev. Ser. B. 1979. V. 20. P. 4940.
 ¹⁹⁴ Titov A., Moritz W.//Surface Sci. 1982. V. 123. P. L709.
 ¹⁹⁵ Krakauer H.//Phys. Rev. Ser. B. 1984. V. 30. P. 6834.
 ¹⁹⁶ Tosatti E.//Sol. State Commun. 1978. V. 25. P. 637.
 ¹⁹⁷ Нестеренко Б. А. Снитко О.В. Физические свойства атомарно-чистой поверхности полупроводников. Киев: Наукова думка, 1983.
 ¹⁹⁸ Tosatti E., Anderson P.W.//Sol. State Commun. 1974. V. 14. P. 773.
 ¹⁹⁹ Backes U., Ibach H.//Ibidem. 1981. V. 40. P. 575.
 ²⁰⁰ Persson B.N.J., Demuth J.E.//Phys. Rev. Ser. B. 1984. V. 30. P. 5968.

- ²⁰¹ Binnig G., Rohrer H., Gerber Ch., Weibel E.//Phys. Rev. Lett. 1983. V. 50. P. 120.
 ²⁰² Aono M., Souda R., O shima C., Ishizawa Y.//Ibidem. V. 51. P. 801. Nakamura K., Ohtomi K., Sugano S.//J. Phys. Ser. C. 1984. V. 17. P. 5645. 204
- 205
- 206
- Naumovets A.G.//Sov. Sci. Rev. Sec. A: Physics. 1984. V. 5. P. 443. Lang N.D.//Phys. Rev. Ser. B. 1971. V. 4. P. 4234. Wojciechowski K.F.//Surface Sci. 1976. V. 55. P. 246. MacRae A.U., Muller K., Lander J.J., Morrison J., Philips J.K.//Phys. Rev. Lett. 1969. V. 22. P. 1048. Jostell U.//Surface Sci. 1979. V. 82. P. 333. 207
- 208
- 209 Городецкий Д. А., Горчинский А. Д.//Изв. АН СССР. Сер. физ. 1979. T. 43. C. 511.
- Городецкий Д. А., Горчински й А. Д., Шевляков С. А.//ФТТ. 1981. T. 23. C. 2242.

- ²¹¹ Bonzel H.P.//J. Vac. Sci. and Technol. Ser. A. 1984. V. 2, pt 2. P. 866.
 ²¹² Lundqvist B.L.//Vacuum. 1983. V. 33. P. 639.
 ²¹³ Norskov J.K., Holloway S.//Ibidem. P. 876.
 ²¹⁴ Bowker M.//Ibidem. P. 669.
 ²¹⁵ Aree B. H., Рутьков Е. В., Тонтегоде А. Я., Холин Н. А.//ФТТ. 1982. Т. 24. С. 780.
 ²¹⁶ Борзяк П.Г., Дадыкин А.А.//Письма ЖЭТФ. 1984. Т. 40. С. 269.
 ²¹⁷ Pick M.A., Davenport J.W., Strongin M., Dienes G.J.//Phys. Rev. Lett. 1979. V. 443. P. 286.
 ²¹⁸ Saguraton M. Strongin M. Lona F. Colbert L//Phys. Rev. Ser. 218
- Saguraton M., Strongin M., Jona F., Colbert J.//Phys. Rev. Ser. В. 1983. V. 28. Р. 4075. В олокитин А. И.//Поверхность. 1985. № 12. С. 127. 219
- ²²⁰ Браун О. М., Пашицки й Э. А. Препринт ИФ АН УССР № 14.— Киев, 1985; //Поверхность. 1986. № 6. С. 5.
- 221 222
- 223
- Engelhardt H.A., Menzel D.//Surface Sci. 1976. V. 57. P. 591. Stensgaard I. et al.//Phys. Rev. Lett. 1979. V. 42. P. 247. Singh D., Wei Su-Huai, Krakauer H.//Ibidem. 1986. V. 57. P. 3292.