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Abstract

Friction is one of the oldest problems in physics with a huge practical significance. However, only during the
last decade this problem gets strong acceleration due to development of new experimental techniques (surface force
apparatus, quartz-crystal microbalance technique, friction force microscopy) and essentially due to great progress
in molecular dynamics (MD) simulation of tribological systems. In the present review we describe the modern state
of the problem from the point of view of surface science physicists. The main accent is devoted to recent MD results
in their connection with experiments.

Keywords: Nanotribology, friction, lubrication, stick-slip

PACS: 46.30.Pa; 81.40.Pd; 61.72.Hh

1 Introduction

Tribology is the science of surfaces in relative motion. It is of great theoretical interest and huge practical significance.
First of all, one has to distinguish two physically different frictional phenomena: the static friction and the kinetic

friction. The static frictional force fs is defined as a minimal force needed to initiate sliding. Its value is determined
by the atomic structure of the sliding interface and the adhesion interactions. To initiate the sliding, one has either
to break interatomic bonds or to initiate a plastic flow at an interface, and it is clear that this process will occur first
at some “weak” places.

The kinetic frictional force fk is the force needed to keep two substrates sliding. Actually, the kinetic friction has
to be considered as a mechanism to convert the energy of translational motion into heat. Therefore, the value of fk
is determined by the rate of excitation of various degrees of freedom of the system due to sliding; the energy of these
excitations is eventually transformed into heat.

Both static and kinetic frictions are highly important in applications, and in different situations either a high or
low value of friction is desired. Without static friction we would not be able to walk and cars to move. A high static
friction is necessary to keep stable mechanical constructions connected by bolts and nuts. A low static friction is
desired in moving parts of machines, e.g., car engines, and the zero value of fs achievable with liquid lubricants would
be the best solution. While the kinetic friction cannot be avoided, in most machines we prefer to have it as low as
possible. Persson [1, 2] presented the following impressive estimation: in the USA friction takes away 6% of the gross
national product, that is > $700 billion per year. However, in some cases we need a high kinetic friction, e.g., between
the road and the tyres when braking the car, or when lighting a fire by rubbing wood on wood as ancient people did
(the latter is in fact an example of tribochemical reaction).

It is not surprising that the main friction laws, the famous Amontons’ laws (see below Sec. 2), belong to the
oldest physical laws and are known already for more than three hundred years. However, a physical explanation of
the empirical Amontons’ laws was given by Bowder and Tabor [3] as late as at the middle of the 20th century. A
new era in tribology began at the end of the 20th century, when this science approached a microscopic and even
atomic levels in the study of the contacts themselves. This approach rapidly expanded due to the development of new
experimental techniques such as the atomic-force microscope (AFM), the friction-force microscope (FFM), the surface-
force apparatus (SFA), and the quartz-crystal microbalance (QCM) able to perform experiments on well-characterized
model systems at the nanoscale. At the same time, the evolution of powerful computers allowed detailed simulations
of friction processes on the atomic scale.

One should distinguish between two different regimes, the hydrodynamic (liquid) friction and the boundary lu-
brication. In the former case, the substrates are separated by a thick (e.g., >∼ 0.01 mm) liquid lubricant film. The
physical problem in this case reduces to solution of the Navier-Stokes equation of hydrodynamics with appropriate
boundary condition and geometry of the contact, and the kinetic friction is determined mainly by the viscosity of the
liquid lubricant (Reynolds, 1886). In the present article we discuss only the case of boundary lubrication, when the
substrates are separated by a thin (a few atomic diameters) lubricant film. The case of “dry friction” also belongs to
this class. The boundary lubrication is obviously the most important in micromachines. However, even in the macro-
machines where the hydrodynamic friction operates typically, the boundary lubrication is also important at stop/start
moments, when the lubricant is squeezed out from the contact area and the surfaces come to a direct contact.

Because tribology is an extremely important branch of material science, at least several review papers are published
every year. We mention only some of them, such as Refs. [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], but this list is far from
a complete one. Some of the works are devoted mainly to tribological experiments [3, 4, 5, 6, 9, 11, 12, 13], others are
more concentrated on theoretical or simulation aspects of the problem [1, 2, 7, 8, 10]. In any case we cannot claim to
present a whole picture of the problem. Our goal in this work is to give a sight on the problem from physicists working
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in surface science and, moreover, mainly on theoretical approaches based on molecular dynamics (MD) simulations
and using simple physical models. In the present work we discuss and try to answer the following questions:

• How to model friction and why should we use Langevin equations for this aim?

• How does the frictional force depend on system parameters, in particular,

– on the interaction between the atoms or molecules,

– on the geometry of the contact, the lubricant thickness and its structure,

– on temperature?

• Where do the energy losses occur and what is the mechanism of the losses?

• When could one expect a minimal friction?

• How does the kinetic frictional force depend on the sliding velocity, in particular, what is a minimally possible
velocity for smooth sliding?

• What is the mechanism of stick-slip motion and of the transition to smooth sliding?

• Which common features exist between the behavior of lubricating films and surface diffusion mechanisms?

• Which knowledge from surface phase transitions and surface nonequilibrium self-organization can be used to
understand friction processes?

One of the main aims of this review is to emphasize the existence of many far-reaching analogies between phenomena
in the lubricant films and in the diffusing or drifting adsorbed layers. Actually it is not surprising, because the case
of boundary friction involves two interfaces separated by an oligolayer lubricant film. In modern terms, this system
represents a kind of quantum well which is operating in strongly nonequilibrium conditions.

The paper is organized as follows. We begin Section 2 with brief discussion of basic experimental techniques used
in tribological studies and a summary of well-established facts and laws. Then we also describe qualitative theories
of friction such as the Bowden and Tabor theory (Sec. 2.2) and the phenomenological theory of the transition from
stick-slip motion to smooth sliding (Sec. 2.3). A short subsection 2.4 is devoted to low-dimensional models such as the
Tomlinson model, the Frenkel-Kontorova model and their combinations. These simplified models allow a qualitative
explanation of many tribological phenomena, at the same time being analytically tractable. Then in Sec. 3 we present
in a brief form some useful information from surface physics to demonstrate similarities of adsorbed and lubricant films.
In particular, we describe different mechanisms of interaction between adsorbed particles and crystalline structures
of adlayers. Special attention is given to collective mechanisms of surface diffusion. Section 4 summarizes theoretical
results on static friction, while Sec. 5 is devoted to problems of kinetic friction. The latter consists of several subsections.
First, in subsection 5.1 we give a rather detailed description of the model used in MD simulations of friction. Melting of
a thin confined film is described in subsection 5.2. The simulation shows that the friction mechanisms are determined
mainly by an interplay of the substrate-lubricant and lubricant-lubricant interactions. When the substrate-lubricant
interaction is stronger than the lubricant-lubricant one, the lubricant film melts during sliding. This case (termed
below as the “soft” lubricant) is described in subsection 5.3. An opposite case of the “hard” lubricant, which may
lead to the smallest friction coefficients (the so-called “perfect sliding”) is discussed in subsection 5.4. The mechanism
of self-ordering of the lubricant film, which provides its “self-organization” and minimizes the friction, is discussed in
subsection 5.5. Finally, in subsection 5.6 we present a possible phenomenological approach which explains analytically
the simulation data. Section 6 is devoted to the important problem of stick-slip motion and the transition to smooth
sliding. We discuss both the microscopic mechanism of smooth sliding (i.e., the problem of the minimal velocity when
the sliding remains smooth, see subsection 6.1) and the macroscopic mechanism of smooth sliding, which is explained
with the help of the earthquakelike model (subsection 6.2). The last Section 7 concludes the paper with the summary
of known results and discussion of the most important, from our point of view, questions which still remain unsolved.

2 Basic experimental techniques, tribological facts and laws

2.1 Techniques and major observations

Let us first briefly describe typical experimental techniques used in tribology. A standard experimental setup to study
macroscopic friction is shown schematically in Fig. 1 (see Bowden and Tabor [3], Rabinowicz [14], and also more recent
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Figure 1: A standard experimental setup for tribology studies. A top solid substrate (slider) is put on the bottom
substrate (track). The slider and track may be separated by a thin lubricant film and compressed together by a
loading force Fload (e.g., due to the mass M of the top block, Fload = Mg, where g is the earth acceleration). The
slider is connected with the base moving with a constant velocity vspring through a spring of the elastic constant kspring

(in a real system, the role of spring may be played by the elasticity of the top block itself). The output (measured)
parameter is the spring force Fspring.

experiments with paper on paper due to Heslot et al. [15]). The control parameters in the experiments are the pulling
velocity vspring, the machine stiffness kspring, the loading force Fload, and the temperature T . In most tribological
experiments the only measured parameter is the spring force Fspring = Ffriction, and this is a serious problem, because
it is not simple to extract much information on the physics of system behavior from a single measured characteristic.
Then the “tribological” friction coefficient is defined as

µ ≡ Ffriction/Fload. (1)

A more precise technique, known as the surface forces apparatus (SFA), was developed by Israelachvili and cowork-
ers [16, 17]. In this technique the solids can have a well defined structure as, e.g., in the case of atomically flat mica
plates glued to two crossed cylinders. The separation between the surfaces may be controlled with the help of optical
interferometry by studying multiple beam interference fringe, so that an accuracy to within ∼ 1 Å may be achieved
[17, 18, 4]. The SFA technique was modified for rheological experiments by Granick and coworkers [19, 20, 21] [in
rheological experiments an ac (“alternating current”, i.e. oscillating) force is applied to the slider, in contrast to the
dc (“direct current”, i.e. constant valued) force in tribological experiments].

The quartz-crystal microbalance (QCM) technique was developed by Widom and Krim [22, 23, 24]. In this case
gas atoms, such as Kr, Xe, or Ar, are condensed onto the surface of a quartz-crystal oscillator covered by, e.g., a
(111) oriented noble-metal film such as Au or Ag. The added mass of the adsorbate and the dissipation due to slip
of the layer over the substrate shift and broaden the microbalance resonance peak. By measuring these changes,
information about the magnitude of the friction force can be obtained. Such experiments can be done in ultrahigh
vacuum. However, this technique allows one to measure not the friction between two solids, but that between a solid
and a film one or two monolayers thick.

Finally, an outstanding role belongs to techniques that use the tip-based scanning microscopies: the scanning
tunnelling microscope (STM, Binnig et al. [25]) useable for conducting surfaces and the atomic-force microscope
(AFM, Binnig et al. [26]) useable for dielectric surfaces — both measure surface topography, and the friction-force
microscope (FFM, Mate et al. [27, 5]) which measures forces transverse the surface. Application of the FFM technique
to tribology studies may be found, e.g., in Refs. [6, 9]. We only mention its main characteristics: the experiments
can be done in ultrahigh vacuum; a typical tip radius is 10 to 100 nm; typical load forces Fload are of order 10 to
150 nN; typical measured friction forces are F <∼ 10−11 N; and available sliding velocities are typically quite low,
v ∼ 1 nm/s to 1 µm/s. Therefore, the FFM technique mainly gives information on the static friction between the tip
and surface, i.e., the friction for a single asperity. An important aspect of these experiments is that while the whole
tip has a macroscopic-scale size (e.g., 1 mm), the contact area is very small, it is comprised of one or a few atoms only.
A special care must also be taken to determine the real contact area [28, 29]. Moreover, in analyzing experimental
dependences the mechanical characteristics of the device such as the tip mass and its stiffness should properly be taken
into account [30].
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Now let us describe the tribological laws and properties that are already well established experimentally. First of
all, two famous Amontons’ laws dated to 1699 state:

The first Amontons law: The frictional force is directly proportional to the load, and the friction coefficient (1) is
independent of the contact area and the loading force, i.e. µ is approximately a constant <∼ 1.

The second Amontons law: The friction coefficient (1) is also independent of the driving velocity. This law is also
known as the Coulomb friction law.

A qualitative explanation of these laws was given by Bowden and Tabor (see Sec. 2.2). It should be emphasized
that both laws work for static as well as kinetic friction, although the static coefficient µs and the kinetic coefficient µk
are determined by different mechanisms. The following results are also well established for the solid-on-solid friction:

1. Kinetic versus static friction. In most cases µk is less or much less than µs, and the kinetic friction µk is
approximately independent of the driving velocity v. The inequality µk < µs naturally leads to a stick-slip
motion at low velocities (see below Sec. 2.3).

2. Forces. The forces in the contacts are of atomic-scale values — close to the plasticity threshold. The forces
can be estimated as follows: A typical force per atom is f ∼ 1 eV / 1 Å = 10−19 J / 10−10 m = 10−9 N. In the
case of STM–AFM–FFM devices, where the area of one contact is A ∼ 5 Å2, taking for the plasticity threshold
Pyield ≈ 0.2 GPa (gold) to Pyield ≈ 100 GPa (diamond), we obtain F ∼ PyieldA ∼ 10−11 N to 5×10−9 N. Note
also that the hardness of the contacts is typically much larger than that of the material itself, because there are
no dislocations in the (very small) stressed volume; therefore, a deformation (either elastic or plastic) always
occurs at the contacts. Namely this fact is used to explain the Amontons laws (see Sec. 2.2).

3. Contacts, junctions, asperities. The area of a real atomic contact Areal between two solids is very small in
comparison with the geometrical (visible) area Avisible. The contacts are randomly distributed in space over the
area of apparent contact, and their typical sizes are 1 to 10 µm (these results follow from optical experiments).
Persson [1, 2] has given the following estimation: for a steel cube of 10×10×10 cm3 put on a steel table, taking
P

(real)
load ∼ Pyield ≈ 109 Pa (the penetration hardness of steel), from the relation Fload = Mg = P

(real)
load Areal, where

M is the block mass and g is the earth acceleration, we obtain Areal ∼ 0.1 mm2. Thus, Areal/Avisible is ∼ 10−5,
and ∼ 103 to 105 junctions are expected at the interface.

4. Memory (age) effects. Numerous experiments show that in fact the frictional forces are not constant but slowly
change depending on the previous dynamical history of the solid-solid contacts, e.g., µs(t) ≈ as + bs ln(t) and
µk(v) ≈ µs(aφ/v) with a characteristic length aφ ∼ 1 µm. This effect can be explained by thermally activated
plasticity of the system [1, 2, 31, 32].

5. Stick-slip motion and smooth sliding. If the static frictional force is nonzero and the system dynamics exhibits
hysteresis, its motion can proceed via the stick-slip mechanism. The stick-slip motion is observed for soft systems
and/or low velocities, while the smooth sliding, for stiff machines and/or high velocities. A phenomenological
theory of this effect is given below in Sec. 2.3, while a more detailed discussion is presented in Sec. 6.

For the boundary lubrication, when the surfaces are separated by a thin lubricant film a few nm wide, the friction
measured experimentally is typically much higher, e.g., by a factor of 102 or even 105 ÷ 107, comparing with the
hydrodynamic lubrication. It depends mainly not on lubricant viscosity but on the chemical composition of the
lubricant. Usually a good lubricant is a substance that is adsorbed by the solid substrates, because this prevents the
squeezing of the lubricant from the contact area. The following well established facts should be mentioned in this
context:

• Almost always there is a lubricant between the solids (called “the third bodies” by tribologists) — either a
specially chosen lubricant film, or a grease (oil), or dust, or wear debris produced by sliding, or water or/and a
thin layer of hydrocarbons, etc. adsorbed from air. Thus, the frictional force is almost entirely determined by
the force required to shear the lubricant film itself.

• The lubricant and the solids are almost always “incommensurate”, because their lattice constants do not coincide
in a general case, and/or the direction of sliding is generally at some angle to the surface lattice, so that the two
surface lattices are not generally in registry. However, the situation is not so simple. Most often are used the
lubricants whose molecules are “glued” (“grafted”) to the substrates, because this helps to avoid the squeezing
of the lubricant out from the contact region. As a result, we may actually have the sliding interface between the
“glued” lubricant layer and other lubricant layers, which may appear commensurate.
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• A thin film (e.g., less than 10 molecules wide) is always layered, i.e., the substrate surfaces induce some ordering
in the film (Abraham [33], Toxvaerd [34], Horn and Israelachvili [35], Plischke and Henderson [36], Schoen et
al. [37, 38, 39], Gee et al. [18], Gao et al. [40, 41, 42]). Moreover, when the width is less than 3 to 5 layers,
most films behave like solid. This effect is known as solidification, or freezing of the lubricant (Gee et al. [18],
Thompson et al. [43, 44]); see also [4, 7] and references therein).

• Finally, large-scale MD simulations show that the lubricant structure may be either liquid (with low kinetic
friction and fs = 0), or amorphous (with high friction), or crystalline (with very low kinetic friction).

2.2 Bowden and Tabor theory

An explanation of the Amontons law that µ is a constant <∼ 1, was firstly given by Bowden and Tabor [3]. It is based
on the assumption that the surfaces in contact are rough, therefore the real (actual) contact area is very small and
proportional to the load, Areal ∝ Fload. The area Areal should grow until the external loading force will be balanced
by the counteracting contact pressure integrated over Areal. Namely, let P (real)

load = PloadA/Areal be the real pressure
at the contact. Then at low loading pressure, P (real)

load < Pyield, when the substrates are in the elastic regime, the
area of each contact is approximately constant, while the number of contacts increases with load. At the high load,
P

(real)
load > Pyield (i.e., in the plastic regime), the area of one contact should increase linearly with the load because of

its plastic deformation. In this way we obtain that µ ∼ F
(shear)
yield /F

(plastic)
yield so that µ ∼ 1 and is independent of the

surface area.
More rigorously, let us assume that the yield stress τs at the contact is linearly coupled with the local pressure p,

τs(p) = τ0 + αp, (2)

where τ0 is the yield stress at zero external pressure. Then, integrating over the area of real contact, we obtain

Ffriction = τ0Areal + αPload (3)

and
µ = α+ τ0/〈p〉, (4)

where 〈p〉 = Fload/Areal. Thus, the Amontons law operates when either 〈p〉 � τ0, or 〈p〉 is constant, the latter holds
both for plastic and elastic surfaces. In the case of the ideally plastic surfaces 〈p〉 is constant, 〈p〉 = Pyield. For the
elastic surfaces the real surfaces are self-affine fractals (see Volmer and Natterman [45] for details). Therefore, when
Pload increases, the old contacts are expanding and new contacts are created, that leads to 〈p〉 ≈ const too [46, 45].
Finally, when the real area of contact becomes equal to the apparent area, the Amontons law does not operate anymore.
However, this regime may be achieved for rubber but not for steel — a machine will be destroyed earlier.

2.3 Stick-slip and smooth sliding: Phenomenology

In a typical tribological experiment a spring is attached to the slider, and its end is connected to a base moving with
a constant velocity vspring as shown in Fig. 1. The same is true for real machines, where the elasticity of the moving
parts plays the same role. Let us assume that initially the system is in rest and the spring has its natural length.
When the base begins to move, the spring stretches, F increases until it reaches the threshold value Fs corresponding
to the static frictional force, and the block starts to move. Then due to inertia, the slider accelerates to catch the base.
If vspring is small, F decreases down to the “backward” threshold force Fb, and the slider stops. Then the process
repeats, so the stick–slip motion occurs as shown in Fig. 2a; otherwise, when vspring is large, the smooth sliding takes
place as in Fig. 2b.

Numerous experiments agree that the behavior depends on the values vspring and kspring: the smooth sliding is
observed if the spring is stiff and/or the velocity is high; otherwise, the stick-slip motion is observed (see Fig. 3, left
panel). During stick, the elastic energy is pumped into the system by the driving; during slip, this elastic energy is
released into kinetic energy, which eventually must be dissipated as heat.

If the frictional force is dependent on the instantaneous velocity only, Ffric = f(v), then the boundary separating
two regimes would correspond to the vertical line on the (vspring, kspring) plane (i.e., the critical velocity is independent
of kspring) [1, 2], which contradicts the experiments. Thus, “memory” effects must be incorporated to explain this
behavior.

A phenomenological theory of the transition from stick-slip motion to smooth sliding has been developed by Heslot
et al. [15], Baumberger et al. [47, 48], and Persson [31, 49]. The model is based on the assumption that the static
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Figure 3: Left panel: phase diagram on the (vspring, kspring) plane showing regions with stick-slip and smooth-sliding
regimes. Right panel: growing of fs with the time of stationary contact and increasing of the spring constant f =
kspringvspringt at high (a) and low (b) driving velocities.

frictional force depends on the time of stationary contact. For example, if the sliding-to-locked transition occurred at
t = 0, then the static frictional force should grow as

Fs(t) = Fs1 + (Fs2 − Fs1)(1− e−t/τ ), (5)

so that just after the locking the force is Fs(0) = Fs1, but later, at t→∞, it approaches the value Fs(∞) = Fs2 > Fs1.
Following Persson [1, 2, 31], let us draw in Fig. 3 the dependence (5) and the spring force Fspring(t) = kspringvspringt

as functions of the contact time for two different driving velocities. In case (a) the spring force increases faster with t
than the initial linear increase of the static frictional force; hence the motion of the slider will not stop and no stick-slip
motion will occur. In case (b) the spring force will be smaller than the static frictional force until t reaches the value
t1 at which time slip starts, hence stick-slip motion will occur. Thus, the critical velocity is determined by the initial
slope of the dependence (5), vc ∼ k−1

springdFs(t)/dt|t=0.
The phenomenological model, in its simplest version, includes two differential equations. The motion of the sliding

block is described by the equation

Mẍ(t) +Mηẋ(t) + Ffric[x(t)] = Fdrive[x(t)] = kspring[vspringt− x(t)], (6)

where x(t) is the coordinate of the sliding block, M is its mass, and η is a phenomenological coefficient describing the
viscous damping when the block slides over the bottom block. The second equation has to describe the frictional force
Ffric[x(t)]. The idea is to introduce some artificial variable called the “contact-age function” φ(t) which depends on
the prehistory of the system, and is defined by the following differential equation,

φ̇(t) = 1− ẋ(t)φ(t)/aφ, (7)

where aφ is some characteristic distance of microscopic-scale order, e.g., the substrate lattice constant a. Then one
assumes that Ffric[x(t)] in Eq. (6) is determined by Eq. (5) where, however, one has to substitute the contact–age
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function φ instead of time, the backward force Fb instead of Fs1, and the static frictional force Fs instead of Fs2, so
that

Ffric[x(t)] = Fb + (Fs − Fb) (1− exp{−φ[x(t)]/τ}) . (8)

Thus, for the stationary contact, ẋ(t) = 0, we have φ(t) = t and recover the dependence (5). On the other hand,
for the steady sliding regime the contact-age function φ = aφ/vspring ≡ τv(vspring) does not depend on time (here τv
is the average time a junction survives before being broken by the sliding motion). The force Ffric(v) = Fb + (Fs −
Fb) [1− exp(−aφ/vspringτ)] is constant, but its value depends on vspring. The friction force is large at low velocities,
Ffric = Fs for vspring → 0, and it is small at high velocities, Ffric = Fb for vspring →∞.

The set of equations (6–8) leads to smooth sliding at large vspring and to stick–slip motion at low velocities. The
boundary curve in the (vspring, kspring) phase diagram separating the steady smooth sliding from the stick–slip motion,
can be found by linear stability analysis (Persson [49]) by substituting

x(t) = vspringt− [Ffric(vspring) +Mηvspring] /kspring + ∆x eκt

and φ(t) = τv(vspring) + ∆φ eκt into Eqs. (6–8) and linearizing over small ∆x and ∆φ.
Using the parameters M , kspring and vspring corresponding to an experimental setup, taking reasonable values for

the forces Fb and Fs, and playing with the phenomenological parameters τ , η and aφ, one can achieve an excellent
agreement with experimental results, especially if one takes a more complicated form for the dependence (8), e.g.,
one with a few characteristic times. However, while the dependence (5) can be explained with the help of a physical
model, the phenomenological dependence (8) has no good physical background, because it does not follow from
simulation. However, in Sec. 6.2 we show that these ideas being combined with an earthquakelike model, do explain
the experiments.

A more involved model was developed by Aranson et al. [50]. It is based on the hydrodynamic equation for flow
coupled to a dynamic order parameter field ρ(r, t). The dynamics of the latter is governed by the Ginzburg-Landau
equation like in phenomenological approaches to the phase transition problem. Therefore, such a model accounts for
the shear- or sliding-induced melting/freezing of the confined film. With an appropriate (but reasonable) choice of
the model parameters, it successfully describes stick-slip and smooth sliding, and even predicts new effects such as
nucleation of liquid droplets in the overheated lubricant film, and ultrasound generation at stick-slip.

Finally, a large attention was paid recently to a mesoscopic approach based on a generalization of the “shear
transformation zone” theory (Lemaitre and Carlson [51]). In this theory, the plastic deformation of the substrates
or the lubricant at the interface is represented by a population of mesoscopic regions which may undergo nonaffine
(plastic) deformations in response to stress. The theory of this class claims to fill a gap between microscopic MD
simulations and macroscopic phenomenological theories.

2.4 Low-dimensional models

Many tribological phenomena can be explained with the help of quite simple models. In these models one usually
assumes that the substrates are rigid and the driving force is applied to the top substrate or even directly to the
lubricant. Two different algorithms are typically used: the constant-force algorithm, when the driving force changes
adiabatically, and the constant-velocity algorithm (or the algorithm with an attached spring), when the top block is
driven through a spring whose end moves with a constant velocity (as an everyday analogy, one may think about
driving a car with a constant acceleration or with a constant speed). Both algorithms are useful in different situations.

The most known among simple models are the Tomlinson model [53] and the Frenkel-Kontorova model [54, 55].
However, even the simplest model of a single atom placed into the external sinusoidal potential and driven by the
dc force applied directly to the atom (see Fig. 4) can explain essential physics of friction in terms of the Langevin
motion equation in the underdamped limit. This model allows a rigorous treatment as summarized in the monograph
by Risken [56]. At zero system temperature, T = 0, the average velocity 〈v〉 of the particle as a function of the
driving dc force F exhibits hysteresis. Namely, let us consider a particle of mass M placed into the external sinusoidal
potential V (x) of the height E = maxV (x)−minV (x) and the period a, and let it be driven by the dc force F . Then
the forward locked–to–running transition takes place at the force F = Fs = πE/a, while the backward transition, as
shortly is shown, at the threshold force F = Fb =

(
2
√

2/π
)
η
√
ME (here η is the viscous damping coefficient). Thus,

in the underdamped case, η < ηc ≡
(
π2/2

√
2
)√E/Ma2 = (π/4)ωs, we have Fb < Fs, and the system has to exhibit

hysteresis due to the inertia of the particle [here ωs = (2π/a)
√
E/2M is the frequency of small-amplitude oscillation

of the particle at the bottom of the external potential]. In the simplest model of friction the force Fs corresponds to
the static frictional force, while the threshold force Fb, to the kinetic frictional force, and the inequality Fb < Fs is
just the necessary condition for existence of stick-slip motion.



2 BASIC EXPERIMENTAL TECHNIQUES, TRIBOLOGICAL FACTS AND LAWS 9

running
  F>Ff

  bistable
 Fb<F<Ff

locked
 F<Fb

F

Figure 4: Bistability of a single driven atom in the periodic substrate potential. The atom is either locked in the
minimum of the potential at F < Fb, or it is in the running (sliding) state if F > Fs when the minima are degraded.
For intermediate forces, Fb < F < Fs, the system is bistable, and its behavior depends on the initial state.

The threshold force Fb can be found from calculation of energy gain and loss. When the particle moves for the
distance a (one period of the external potential), it gains the energy Egain = Fa and loses an energy Eloss. In the
regime of steady motion these energies must be equal to each other, Egain = Eloss. Thus, the backward threshold force
for the transition from the sliding (running) motion to the locked (pinned) state is determined by Fb = min(Eloss)/a.
The energy losses are caused by the external frictional force Ffric = Mηv,

Eloss =
∫ τ

0

dt Ffric(t) v(t) =
∫ τ

0

dtMηv2(t) = Mη

∫ a

0

dx v(x), (9)

where τ is the “washboard period” (the time of motion for the distance a). The minimal losses are achieved when the
particle has zero velocity on top of the total external potential Vtot(x) = V (x)− Fx.

In the limit η → 0 and F → 0, the minimal energy losses can easily be found analytically. From the energy
conservation law, 1

2Mv2 + 1
2E [1− cos (2πx/a)] = E , we can find the particle velocity v(x). Substituting it into Eq. (9),

we obtain

Fb =
Mη

a

( E
M

)1/2 ∫ a

0

dx

[
1 + cos

(
2πx
a

)]1/2

= C η (EM)1/2
, (10)

where the numerical constant C ≡ (2π)−1
∫ 2π

0
dy (1 + cos y)1/2 = 2

√
2/π ≈ 0.9 depends on the shape of the external

potential only. Equation (10) can be rewritten as

Fb = Mηv̄ = (2/π)Mηvm,

where v̄ = a−1
∫ a

0
dx v(x), and vm = (2E/M)1/2 = πv̄/2 is the maximum velocity achieved by the particle when it

moves at the bottom of the external potential. Note that the average particle velocity, 〈v〉 = τ−1
∫ τ

0
dt v(t) = a/τ ,

continuously tends to zero when F → Fb, because τ →∞ in this limit.
The characteristic velocity of the transition, however, depends on the mass of the moving block. As shown above,

it may be estimated as vm ∝ (E/M)1/2, where E = Nsε, Ns is the number of atoms at the interface, and ε is the barrier
per one surface atom. When the sliding block is considered as a rigid one, then M = NsN⊥m, where m is the atomic
mass and N⊥ is the number of atomic layers in the block. Thus, for a macroscopically large block, N⊥ → ∞, the
velocity at the transition may be made as small as desired, vm ∝ N

−1/2
⊥ , e.g., such as that observed experimentally.

This picture, however, is wrong as was firstly mentioned by Persson [57]. The reason is that for a nonrigid substrate,
only the first (closest to the interface) atomic layer stops at the transition, so that M = mNs, and vm should be of
atomic-scale value (see Sec. 6.1 below for a more detailed discussion).

Now, if we attach a spring to the atom instead of driving it directly, we observe either the stick-slip or smooth
sliding depending on the driving velocity, and the transition between these two regimes (Urbakh et al. [58]). In fact,
in this way we just come to the famous Prandtl and Tomlinson model [52, 53] shown in Fig. 5 (left panel). This model
is, probably, the most widely used in interpretation of tribological experiments due to its simplicity and incorporation
of main physics. It clearly shows that a nonzero static friction emerges due to multistability of the system. The
system is locked in one of the minima of the potential energy landscape until the increasing elastic stress allows
overcoming the barrier. After that the slider is accelerated. The potential energy of the elastic stress is converted into
the kinetic energy of the slip (which then must be converted into heat, although this process may be included into the
model artificially only). Then, the system rapidly drops to the next nearest minimum, where it is locked again. The
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v
spring

Figure 5: The Tomlinson model (left panel) and the Frenkel-Kontorova model (right panel).

Tomlinson model is described in detail in many surveys, e.g., in Refs. [7, 8, 10]. The physics of this model is quite
simple: when the stage moves with a constant velocity v, the “kinetic friction” corresponds in fact to fs and, therefore,
it does not depend on the velocity in agreement with many experiments. A long list of applications of the Tomlinson
model to concrete systems can be found in the review paper of Robbins and Müser [8]. However, this simple model can
provide only a qualitative description of the problem. Note also that it is more applicable to tip motion in tip-based
devices than to a contact between two macroscopic solids.

Another model widely used in tribology is the Frenkel-Kontorova (FK) model [54, 55] (see also Braun and Kivshar
[75, 76] and references therein). The FK model describes a chain of interacting atoms (with harmonic interaction in
the simplest case) placed into a periodic (e.g., sinusoidal) substrate potential (Fig. 5, right panel). First introduced to
describe dislocations in solids, the FK model found then a wide area of applications, in particular, in surface physics,
where it is used to describe adsorbed monolayers. The most important object in the FK model is the so-called kink.
Let us consider the simplest case of the trivial ground state (GS) when the number of atoms N coincides with the
number of minima of the substrate potential M so that the dimensionless concentration θ = N/M (often termed
coverage) is θ = 1. Then the kink (or antikink) describes a configuration with one extra atom (or vacancy) inserted
into the chain, N = M±1. After relaxation, the minimum-energy configuration corresponds to a local compression (or
extension in the antikink case) of the chain. The reason why kinks are so important, is that they can move along the
chain much easier than the atoms themselves. The activation energy for kink motion, the so-called Peierls-Nabarro
(PN) barrier, is always smaller or much smaller than the amplitude of the substrate potential. Because the kinks
(antikinks) correspond to extra atoms (vacancies), their motion provides a mechanism for mass transport along the
chain. Therefore, namely kinks are responsible for mobility, conductivity, diffusivity, etc. in such systems. The higher
is the concentration of kinks, the higher will be the system mobility. In the case when the GS is trivial (i.e., θ = 1),
the first step in system motion is creation of a kink-antikink pair. When the chain is finite, kinks are generated at
one of chain’s free ends and then propagate along the chain until disappearing at the another free end. Each run of
the kink (antikink) through the chain results in the shift of the whole chain by the distance of one lattice constant.
In the case of a finite film confined between two solids, one may expect that the onset of sliding is initiated by the
emerging a local compression (kink, misfit dislocation) at the boundary of the contact, while kink’s motion is just the
mechanism of sliding.

The most important concept of the FK model is the so-called incommensurability and the Aubry transition con-
nected with it. Namely, let N and M be “incommensurate” (more rigorously, let the substrate period as = L/M and
the natural period of the chain aA = L/N be such that in the limit of infinite chain’s length L→∞, their ratio aA/as
is irrational number). Then for a stiff enough chain, g > gAubry (here g is the elastic constant of the chain), the chain
becomes “free” from the substrate. In the sliding state, the static frictional force is zero, fs = 0, so that any small
applied force f leads to chain’s motion. However, the motion is still not absolutely free: the kinetic frictional force is
nonzero, because the motion results in creation of phonons in the chain, although with a quite subtle mechanism. The
threshold value gAubry nonanalytically depends on the atomic concentration θ and takes the minimum value for the
golden-mean ratio aA/as = (

√
5− 1)/2. A simple explanation of the fs = 0 sliding state is the following: in this state,

for every atom going up over the barrier, there is another going down, and these two processes exactly compensate
one another. On the other hand, below the Aubry transition the two incommensurate 1D surfaces are locked together
due to creation of local regions of common periodicity. Note also that a finite FK chain is always pinned, even in the
truly incommensurate case of g > gAubry, because of the pinning of free ends of the chain. The pinning force in this
case, however, does not depend on the chain length, Fs ∝ N0.

For the quasiperiodic substrate potential, qualitatively the same scenario is observed, if one uses the spiral-mean
concentration (a cubic irrational) instead of the golden-mean one (a quadratic irrational) [59]. The case of the random
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substrate potential was studied by Cule and Hwa [60] for the 1D system, and then it was generalized to the 2D model
in [61].

The FK model and especially its generalized versions are naturally applicable to description of a contact of two
solid surfaces (i.e., the case of “dry” friction), and especially to QCM experiments, where a 1D or 2D system of
interacting atoms slides over the periodic substrate potential. Another important point is that the FK model allows
a more or less accurate investigation of the transient behavior at the onset (or stop) of sliding, which is quite difficult
to study in realistic 3D models.

There are also several combined models used in tribology, such as:

1. The model with two periodic substrates with an atom in between, when the top substrate is driven through an
attached spring (Rozman et al. [62, 63], Zaloj et al. [64]; Müser [65]);

2. The “train” FK model, where the driving force acts on the end atom of the chain only (Strunz and Elmer [66]).
This model demonstrates an avalanche-like behavior at the onset of sliding;

3. The combined FK–Tomlinson model (Weiss and Elmer [67, 68]);

4. The model consisting of two coupled FK chains (J. Röder et al. [69]);

5. The model describing the FK chain between two sinusoidal potentials (Rozman et al. [70, 71]; Filippov et al.
[72]; Braun et al. [73]);

6. The two-dimensional Tomlinson model (Gyalog et al. [74]);

7. The two-dimensional “springs and balls” FK model describing a 2D layer of harmonically interacting atoms in
the 2D periodic substrate (see Braun and Kivshar [75, 76] and references therein);

8. The scalar anisotropic 2D FK model treating a system of coupled 1D FK chains (see Braun and Kivshar [75]
and references therein);

9. The vector anisotropic 2D FK model (e.g., the zigzag FK model; see Braun and Kivshar [75] and references
therein);

10. The vector isotropic 2D FK model (see Persson [77, 78, 79, 57], and also Braun and Kivshar [75] and references
therein);

11. The two-dimensional tribology model (Hammerberg et al. [80, 81]).

It should be noted, however, that simplified low-dimensional models, being very useful in understanding some
physical aspects of friction, may claim on qualitative explanations only. The static friction is determined by the
atomic structure of the interface, and clearly any low-dimensional model cannot reproduce this structure adequately.
A situation is even worse with kinetic friction: as we already mentioned, the kinetic friction is due to conversion of
the kinetic energy into heat. This process must pass through the stage of excitation of phonons at the interface, but
the rate of this process is first of all determined by the density of phonon states, which can be correctly described in
a three-dimensional model only.

3 An adsorbed film: Structure, energy exchange, diffusion

As stated above, it is now recognized that in the case of boundary friction the lubricant film confined between the
“hills” of rubbing surfaces is no more than a few monomolecular layers thick. It is thus not surprising that many
problems in tribology should be, and actually are, closely related to problems studied in surface physics and chemistry,
in particular to surface diffusion and migration processes. Although surface phenomena are generally distinguished by
their complexity (according to W. Pauli, “Surface was invented by the devil”), anyhow “open” surfaces are evidently
more accessible to experimental investigations with powerful modern techniques than films “closed” between two solid
substrates. Quite many properties of adsorbed films are already well established, and it is advantageous to make use
of this knowledge to getting more insight into the phenomena that occur in friction contacts.
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3.1 Structure of adsorbed layers

It what follows, we will consider the situation when the amplitude of attraction of the adsorbed particles (adparticles)
to the substrate is stronger than the amplitude of mutual (lateral) interaction between the adparticles, i.e., when
the adhesion is stronger than cohesion. In such a case the adsorbate wets the substrate and the first full monolayer,
representing a quasi-two-dimensional (2D) system, forms before the building-up of the subsequent monolayers. Such
situation is most relevant in the context of phenomena in lubricant films.

A few recent decades have brought an immense information on the rich variety of 2D phases that are formed on
surfaces under various experimental conditions. They include 2D gases (and lattice gases), liquids, crystals, liquid
crystals as well as phases with a peculiar order (so-called extended short-range order), which is specific of the 2D state
only [82, 83]. The diversity of the 2D structures is caused by the superposition of interactions of adsorbed particles
with the substrate (Vas) and with each other (Vaa).

When there is only a single adsorbed atom, it occupies a position corresponding to a minimum of the substrate
potential. The coupling of the adatom with the substrate may be weak as in the case of physical adsorption (e.g.,
for adsorption of inert gases) or strong in the case of chemisorption, when the atomic and substrate electronic shells
overlap [84]. Moreover, due to broken symmetry in the normal direction, adatoms often have a nonzero charge, and
that leads to an additional coupling (the so-called image forces).

When there are two adsorbed atoms, they interact owing to different mechanisms [85, 86]. As two atoms come close
to one another and their electronic shells overlap, it emerges a “direct” interaction similar to usual chemical coupling,
but now perturbed by the surface. Due to nonzero charges of the adatoms, they interact according to the dipole-dipole
mechanism which is long-ranged. This interaction is repulsive if their dipole moments are oriented parallel to each
other (this is the case when the adatoms are chemically identical) and attractive if the dipole moments are antiparallel
(e.g., in the case of interaction of an electropositive adatom with an electronegative one). The exchange by electrons
through the substrate between the adatoms leads to their “indirect” interaction, which is oscillating, anisotropic and
also long-ranged. Finally, there always exists a long-range elastic interaction between adparticles, because they always
disturb the substrate [87].

To characterize the concentration of adparticles on the surface, let us introduce the value of degree of coverage, or
simply coverage, which as defined as θ = n/nm, where n is the surface concentration of adparticles and nm is their
concentration in a close-packed monolayer. At θ > 0, the interaction of adparticles is not pairwise, i.e., the energy of
interaction of three adatoms is not equal to the sum of interaction energies of these three pairs.

Interplay of the interactions of adatoms with the substrate and between themselves gives rise to a great diversity of
structures of adsorbed films and phase transitions between different phases, which generally have little in common with
the bulk structure of the adsorbate [82, 83]. It is necessary to emphasize the basic difference between the structures
formed in the cases of attractive and repulsive lateral interactions.

Attracting adparticles tend to gather into clusters even at low coverages θ � 1 (Fig. 6a). As a critical coverage
is attained, a first-order phase transition (two-dimensional condensation) starts in the adsorbed layer. It ends with
formation of a dense phase, which covers the whole surface and usually has a structure commensurate with the
substrate structure. This structure may correspond to a coverage θ < 1 if the potential corrugation of the surface is
high enough. However, if the attraction of the adatoms to the substrate is intense and if due to difference of adsorbate
and substrate atom radii the commensurate adlayer does not “screen” the substrate completely, the packing of the first
monolayer may continue through transition to an incommensurate structure. This is a laterally stressed structure, and
its densening continues until the adsorption energy, which is reducing as the first monolayer gets ever denser, becomes
smaller than the adsorption energy in the second layer. As we shall see later, the incommensurate phases in adsorbed
layers provide a high rate of the surface mass transport and are thus interesting objects in the context of elucidating
the physics of the friction processes.

The phase diagrams of adlayers with repulsive lateral interactions are more diverse than those described above
(Fig. 6b). First, rather many rarefield phases, i.e., phases with large interatomic distances in the elementary cell, are
formed at low coverage degrees. Then, the first-order phase transitions are also observed in such layers [82]. This
testifies that the lateral interaction changes from repulsion to effective attraction in some coverage intervals. However,
the structure of 2D “condensates” that appear in this case may be far from being close-packed. The first-order phase
transitions in repulsive adlayers are attributed to progressive reducing of the amplitude of the repulsive interaction as
the adlayer density increases (and correspondingly the distance between the particles decreases). It is believed that
this phenomenon may be due to strong mutual depolarization of adparticles [88] and, if one deals with adsorption
of a metal, to the onset of a nonmetal-metal transition in the adlayer [89]. These interpretations, however, cannot
explain why some systems may undergo a few first-order phase transitions within the coverage range 0 < θ < 1.
An alternative (or perhaps supplementary) interpretation is based on taking into account the indirect interaction of
adparticles, whose energy oscillates with distance [85]. This impose a discrete set of distances at which adparticles can
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Figure 6: Possible scenarios of formation of monolayers. (a) Two-dimensional condensation of attracting adparticles.
(b) Structural states in the range 0 < θ < 1 in the case of lateral repulsion.

arrange themselves on the surface. Typical systems of this kind are electropositive adlayers (alkali and alkaline-earth
adatoms). The polarity of the adsorption bond in this case is very high, which entails a strong dipole-dipole repulsion
of the adatoms. As a result, such adlayers usually show broad coverage regions where their structure is incommensurate
with the substrate. The rich phase diagrams of these systems offer a convenient possibility for studying the interrelation
between the phase state of the adlayer and various surface characteristics such as adsorption energy, surface diffusion
kinetics, catalytic activity, electron emission properties, etc. [90, 91].

As the coverage increases to values θ > 1, the adsorbed film may grow either via the layer-by-layer (Frank–van der
Merwe) mechanism or via the Stranski-Krastanov mechanism. In the latter case, a few monolayers grow layer-by-layer,
while afterwards three-dimensional (3D) islands start to grow and expand on the surface. In general, the growing film
takes the structure corresponding to its bulk crystalline structure when its thickness exceeds a few layers.

By analogy with the data obtained for adsorbed films, the structure of a thin lubricant film should be determined
by the interplay between the lubricant-substrate interaction Vsl and the lubricant-lubricant interaction Vll, and for a
film a few monolayers thick, the lubricant structure may substantially differ from the bulk one.

3.2 Energy exchange on surfaces

Surface science physicists are using several well developed experimental techniques to study dynamics of surface
processes. First, vibrations in adsorbed layers can be measured with the help of IR and LEELS spectroscopy. The
frequencies of atomic oscillations give information on adsorption sites, while the width and shape of the vibrational
line is directly connected with damping of the vibrations, i.e., the rate of energy exchange between the adparticle and
the substrate. Experiments stimulated theoretical studies of these processes [92]. It was established that when the
vibrational frequency ω is lower than the maximum (Debye) frequency ωm of the phonon spectrum of the substrate,
the adatom vibrations decay via the one-phonon mechanism with the rate [92, 93]

ηph(ω) =
π

2
mα

mS
ω2ρ(ω), (11)

where the surface local density of phonon states for the semi-infinite solid can be approximated by the function [93]

ρ(ω) =
32
π

ω2(ω2
m − ω2)3/2

ω6
m

. (12)

The functions (11) and (12) are shown in Fig. 7.
Otherwise, when ω > ωm and the one-phonon channel is closed, the damping is due to multi-phonon mechanisms

with a rate η ∼ 10−2ω. The same is true when the elementary cell of the substrate is complex so that the phonon
spectrum has a gap, and the vibration frequency lies inside the gap. In the case of chemisorption on a metal or
semiconductor surface, additional damping emerges due to excitation of electron-hole pairs in the substrate; this
mechanism also leads to the rate of order η ∼ 10−2ω.

In the case of tribological systems, where the film is confined between two substrates, the same reasons could be
applied for the processes between each of the two lubricant–substrate interfaces.
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Figure 7: Dependence of the local density of phonon states [Eq. (12), dotted curve] and the rate of one-phonon damping
coefficient [Eq. (11), solid curve] on the frequency ω.

As the energy of an adsorbed atom becomes larger than the height Ed of the substrate potential, the adatom
may migrate over the substrate. At low temperatures, kBT � Ed, atomic motion is activated and corresponds to
Arrhenius diffusion with the coefficient D = Rl2 exp (−Ed/kBT ). The frequency factor R and the length of adatom
jump l essentially depend on the damping η. For the one-dimensional diffusion, R ∝ η and l ∝ 1/η at low damping
η � ω, R ∼ ω/2π and l ≈ a at intermediate damping η <∼ ω, and R ∼ a2/2πη and l = a in the overdamped case. For
the two-dimensional substrate potential, these questions were studied, e.g., in the paper due to Braun and Ferrando
[94].

When the concentration of adatoms is nonzero, their mutual interaction begins to play an important role, and the
diffusion is determined by collective mechanisms as described in the next subsection.

3.3 Surface diffusion

Surface diffusion is involved as an important stage into many surface phenomena and technological processes based
on them, such as crystal growth, catalysis, spreading, corrosion, sintering, etc. The equations describing diffusion in
an initially inhomogeneous system, i.e., in the presence of a concentration gradient, were set up in 1855 by A. Fick by
an analogy with the heat conduction equation derived in 1822 by J. Fourier.

The first Fick’s law relates the diffusion flux J to the particle concentration gradient ∇n as

J = −D∇n, (13)

where D is the diffusion coefficient (termed also the diffusivity). This simple expression, where D is independent of n,
takes no account of interaction between the diffusing particles. In a real situation, however, the interaction between
the particles does play an important role and the flux is described in a general form as

J = −L (∇µ)p,T , (14)

where L is a transport coefficient and (∇µ)p,T is the gradient of the chemical potential (e.g., see [95]). This expression
can be rewritten to make it similar to equation (13):

J = −D(n)∇n. (15)

Here the diffusion coefficient (termed chemical diffusion coefficient, or heterodiffusion coefficient) is concentration
dependent since it incorporates the factor ∂µ/∂ lnn and thus takes into account the interaction between the diffusing
particles. The concentration dependence of D can also stem from variation of the frequency and length of the particle
jumps with n. In the strict sense, diffusion always occurs in an ensemble of particles. The result of interaction
within the ensemble is that diffusion in general, and surface diffusion in particular, is essentially a collective process.
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Intuition suggests that repulsion should enhance the diffusion while attraction should counteract it. This expectation
is confirmed by experiments as well as simulations [96].

There exists a transparent analogy between the processes in the lubricant film and surface diffusion processes. The
lubricant film within an operating tribocouple is subjected to a shear stress, which shifts the molecules with respect
to the surfaces and to each other. The driving force in this case is an external mechanical force. As follows from
equation (14), the mass transport in the case of surface diffusion is due to gradient of the chemical potential ∇µ. This
value (with the negative sign) is also termed a thermodynamic force:

F = − (∇µ)p,T (16)

(e.g., see [97]). It should also be reminded that the particle mobility B and the diffusion coefficient D are related by

the famous Einstein formula B = χD/kBT , where χ = kBT
[
n (∂µ/∂n)V,T

]−1

is the static susceptibility (also known
as thermodynamic factor).

Let us consider some representative experimental data on surface diffusion (SD). There are two types of SD
experiments which allow extraction of data on SD parameters and mechanisms. In the first of them one records the
process of diffusional relaxation of the system from an initial nonequilibrium state to the final equilibrium state. This
may be the process of evolution of intentionally created concentration profile [98], or the process of nucleation and
growth of islands in the initially homogeneous but nonequilibrium system (the Ostwald ripening [99, 100]), or the
variation of the shape of an object (blunting of a tip, smoothening of an initially grooved surface, etc.). Another
type of experiments is based on the observation of the mobility of particles (atoms, molecules, clusters) in equilibrium
systems. For instance, one can record the random walks of individual particles using microscopies providing atomic
resolution [101] or analyze the fluctuation of the number of particles in a small area [102].

There is a number of review papers on surface diffusion [98, 102, 103, 104, 105, 107]. Here we will give a brief
summary of the results which are essential for understanding some aspects of the friction processes.

A reliable evidence established about half a century ago is that the substrate atomic structure is a highly important
factor which affects kinetics of surface diffusion. Much later it was realized that another important factor in the diffusion
process is the atomic structure of the diffusing layer itself [98]. In fact, systematic and detailed studies of the factors
determining SD kinetics are few in number, because experimental investigations of surface diffusion are very laborious.
Nevertheless, some general regularities relating diffusion kinetics to structure of adlayers and phase transitions in them
are already reliably established. Let us now consider, in a summarized form, available experimental information on
surface diffusion mechanisms and kinetics typical of adsorbed layers of various density.

3.3.1 Submonolayer coverages

The most salient feature of surface diffusion is actually its pronounced collective character originating from the inter-
action of diffusing particles. This effect reveals itself even at low coverages (θ � 1) as the particles may unite into
clusters. The clusters can differ from one another by the number of particles in them, by their shape, and by diffusion
mechanisms, which are strikingly varied [105]. The clusters can jump as a whole; their displacement can also proceed
by successive shifting of individual atoms or some groups of atoms, or by rolling if the clusters are ballshaped, etc. (see
Fig. 8). It also appears that mobility of the clusters may depend very critically on their size. A maximum diffusion
rate is characteristic of the clusters having a so-called magic size. It typically corresponds to a special symmetry of
the cluster shape which depends, in turn, on the structural fit between the substrate and the cluster.

The range of low coverages (typically θ ≤ 0.1) corresponds to a phase of the non-ideal 2D lattice gas. In this phase,
the diffusion coefficient D gradually decreases with growing θ (see Fig. 9). The most probable reason for this is the
progressing formation of the clusters, which generally have a lower mobility than individual atoms. Actually this is
the stage of a subcritical nucleation. Let us note that the simultaneous existence of clusters which contain different
number of atoms and have different mobilities means that the value D introduced to characterize the diffusion flux is
here an averaged (effective) parameter.

This is even more so in the regions of the first-order phase transitions (PT-I) where the adlayer consists of two
coexisting phases characterized by different structure and adatom mobility. The diffusion process has here a complex
character. A particle is first detached from the dense phase (actually this is an act of two-dimensional evaporation),
and the activation energy required for that is the sum of the binding energy in the dense phase and the activation
energy of diffusion in the dilute phase [108]. Then the particle diffuses in the dilute phase and either adds to another
island of the dense phase or creates a new nucleus of the dense phase with other particles. Anyhow, the diffusion
coefficients determined experimentally in the PT-I regions are the smallest.

As described in Sec. 3.1, the PT-I region is usually followed by a commensurate-incommensurate (C-I) transition.
The adlayer in this case is rather dense (approaching a close-packed monolayer). The C-I transition starts with local
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Figure 8: Schematics of some diffusion mechanisms for clusters and atomic islands. (a) Sequential displacement of
individual atoms. (b) The dimer shearing mechanism. (c) The gliding mechanism: the cluster glides as a whole from
one position to the next. (d) The edge diffusion mechanism: the motion of an adatom along the island edge causes
a shift of the center of mass of the island. (e) The evaporation-condensation mechanism. (f) Schematic of the rolling
mechanism. (g) The dislocation (soliton) mechanism: adatoms in the dislocation (soliton) are shown as black balls.
(h) Diffusion of a dimer in an atomic channel by the leapfrog mechanism. References to original works see in review
[105].

breaking of commensurability between the adlayer and the substrate [109, 110]. This occurs through formation of
incommensurate regions (domain walls) between the commensurate domains (see Fig. 10). The domain wall (DW)
incorporates extra (“superstoichiometric”) adparticles. The width of the wall depends on the amplitude of the surface
potential corrugation, the energy of lateral interaction, and temperature [82, 111]. The DW width grows as the
potential corrugation gets smoother, or as the lateral interaction or temperature increases. If the adatom concentration
is below the stoichiometric value, the domain walls contain vacancies and also correspond to incommensurate regions.
From mathematical point of view, the domain walls can be treated as topological solitons [82, 111, 75].

The motion of the solitons provides the mass transport through the commensurate phase. The diffusion coefficient
usually shows a more or less pronounced maximum at the early stages of the C-I transition (Fig. 9) which is attributed
to the soliton diffusion mechanism. The activation energy of diffusion Ed in this coverage region passes through a
minimum which is substantially lower than the activation energy corresponding to diffusion of single adatoms at θ → 0.
This difference results from the collective character of the soliton diffusion. The elementary act in the soliton diffusion
mechanism is a concerted displacement of a group of adatoms. While some of the adatoms in this group climb the
potential barrier, others descend from it, and this ensures the low Ed value. The elementary configurational excitation
of the domain wall is a pair of oppositely oriented kinks as illustrated in Fig. 11. This pair may disappear if the
adatoms return to their initial positions, or the kinks may move in the opposite directions along the DW. In the latter
case, the DW will be displaced by one period of the substrate lattice. All these movements occur fluctuatively, thus
resulting in a meandering and random displacement of the soliton.

Suppose we have a commensurate surface phase which has a “free” edge at its one side and contacts a deposit of
the adsorbate (in the form of a close-packed monolayer) at the other side (Fig. 12). Suppose also that the monolayer is
compressed, which is a rather widespread situation in adsystems. The relaxation of the stress existing in the monolayer
will occur through generation of the solitons in the commensurate phase. Due to their high mobility, the solitons can
easily migrate through the C-phase. Each soliton coming to the free edge of the commensurate phase, expands it by
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Figure 10: A domain wall (soliton) between two commensurate domains.

one period of the substrate lattice. Thus, the C-phase containing even a small number of the solitons, and under a
low gradient of the soliton concentration, can expand over the surface with a high rate. Experiments carried out with
a number of metal-on-metal systems showed that such a scenario is rather typical [112, 105].

Due to strong variation of the diffusion coefficient with coverage (Fig. 9), which reflects the correlation of the diffu-
sion kinetics with lateral interactions and phase transitions in the adlayer, there occurs a pronounced self-organization
of the diffusion zone [113, 112]. At each moment this zone represents a snapshot (a nonquilibrium phase portrait) of
the adlayer whose different regions correspond to different adlayer structures determined by coverage and diffusion
conditions (temperature, time, boundary conditions, etc.). The largest areas in the diffusion zone belong to phases
characterized by the highest diffusion rate. An example of such a process recorded for Ba surface diffusion on Mo(011)
[114] is presented in Fig. 13. Considering the diffusion zone as a nonequilibrium, nonlinear and open object, one may
treat its self-organization in terms of Prigogine’s dissipative structures.

3.3.2 Multilayer films

Since the lubricant film in a tribogap under the boundary friction regime is a few monolayers thick, it is understood
that diffusion in and on multilayers (or, more precisely, oligolayers) is of particular interest in this context.

Let us consider what happens when the coverage in the initial deposit of the adsorbate exceeds one monolayer. A
widespread situation is that the binding of the first monolayer with the substrate is stronger than between the first
and second as well as between all subsequent monolayers. The most spectacular example is the multilayer adsorption
of active gases (such as oxygen or hydrogen) on metals at low temperatures. The first monolayer is in this case bonded
with the substrate by chemisorption energy of a few electron-volts per atom while the second and next monolayers
are bonded with a physisorption energy of ∼ 10−1 eV. This leads to a diffusion mechanism which was discovered
by Gomer [115] and received the name “unrolling carpet mechanism” (Fig. 14). Its characteristic feature is a lower
mobility of adparticles within the first monolayer than in the second and next monolayers. The result is that the first
monolayer expands over the surface by virtue of diffusion in the uppermost monolayer. Such a process seems to be
typical for the films which grow on surfaces by the Stranski-Krastanov mechanism. Recall (see Sec. 3.1) that in this
case the adparticles first form one (or maybe a few) full monolayers on the surface and only then gather themselves
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Figure 11: Model of a domain wall with kinks in the p(1 × 2) commensurate structure. Regions 1 and 3 are the
commensurate p(1× 2) domains while the region 2 is the soliton.

into three-dimensional islands.
However, the unrolling carpet diffusion mechanism is non-universal even in the case when the bonding between

the first monolayer and substrate is stronger than between the next monolayers. For example, lithium adatoms on
tungsten (011) surface diffuse faster in the first monolayer than in the following ones despite the stronger bonding in
the first monolayer [116, 98]. This is ascribed to the intense lateral repulsion of Li adatoms within the close-packed
first monolayer and to high mobility of the solitons in it. At the same time, the diffusion scenario proves to be very
sensitive to the chemical nature and other properties of the adsorbate and substrate as well as to temperature and
initial conditions of the diffusion. For example, simultaneous spreading of both the close-packed first monolayer and
of the second monolayer of lithium was observed for a related system Li-Mo(011) [113] (Fig. 15).

The examples presented above illustrate that surface diffusion parameters essentially depend on the number of
monolayer, i.e., on the distance of moving atoms from the substrate surface.

3.3.3 Organic films

Since most present lubricants are of organic origin, the understanding of the mechanisms of surface diffusion of organic
molecules is obviously of particular interest from the standpoint of friction. Up to now, however, these mechanisms
have been explored to a much lesser extent than for inorganics [117, 118, 119]. The quite apparent reason for this is the
much wider variety of organic compounds and the structural complexity of their molecules. Fortunately, the situation
changes for the better with the advent of scanning tunnelling microscopy (STM). This technique allows observation
of movements of individual molecules.

Considering that organic molecules may have a large size and a complex shape, one should expect in this case a
frequent occurrence of various collective diffusion mechanisms. They may range from the situation when the molecule
jumps as a whole to its displacement by successive movements of its fragments changing step-by-step the molecule
configuration and position.

The dependence of the diffusion kinetics on the distance of the molecular layer from the substrate was revealed
very graphically in the spreading of droplets of some substances. For instance, De Coninck et al. [120] observed that
an initially rounded droplet of an oily liquid (polydimethylsiloxane) on a Si substrate evolves into a stepped pyramid
after some time of spreading. The height of each step corresponds to one monomolecular layer. Thus, the spreading
process results in a dynamical self-organization (structurization) of the droplet. This is a natural consequence of the
fact that the local structure of liquid depends on the distance from the liquid-solid interface.

Interesting results were obtained in a systematic STM-investigation of the structure of monolayers formed on the
reconstructed Au(111) surface by alkane molecules (CnH2n+2) with different n [121]. The lack of ordered structures
in the interval 18 ≤ n < 28 was interpreted as the result of a high mobility of the molecules which causes melting of
the monolayer. In turn, the enhanced mobility is explained in terms of a model which takes into account the misfit
between the periods of the alkane chain (2.53 Å) and of the Au(111) surface lattice along the 〈110〉 direction (2.88 Å).
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Figure 12: A schematic of the adlayer phase states in the diffusion zone (top). The diagram at the bottom explains
the origin of interrelation between surface diffusion and surface phase transitions.

Using a Lennard-Jones potential to describe the molecule-substrate interaction, it was found that the amplitude of
substrate potential relief actually passes through a minimum at a “magic size” (n = 16) of the alkane molecule. The
experiments [121], in which alkane molecules with n = 10, 12, 14 and 16 were used as lubricants, gave a qualitative
support to the model [122]. The hexadecane (n = 16) was found to provide the lowest friction coefficient (Fig. 16).

3.3.4 Surface electromigration

Consider now briefly some data on surface electromigration. Recall that electromigration is the mass transport on the
surface and within the volume of conductors induced by passing a direct electric current. Here we are more interested
in surface electromigration, since there exists some analogy between this process and processes in a friction contact.
Actually, in both cases one has a force directed parallel to the surface that acts on surface atoms and molecules and
causes their drift. In a friction contact, this is an external force that causes the surfaces to move relative to each other.
As a constant voltage is applied to a conductor, its surface atoms and atoms adsorbed on it experience the forces
of two origins. One of them is the Coulomb force, which is significant if the surface particles possess a considerable
electric charge. Another is due to momentum transferred from the charge carriers (electrons or holes) which scatter
on the surface. The latter force is often termed the electron (hole) wind.

The Coulomb and “wind” forces can act either in the same direction or in the opposite directions, depending on the
particular situation (the electronic structure of the conductor and the polarity of the adsorption bond). Thus, the mass
transport can be directed towards either the anode or the cathode. Detailed information on surface electromigration
processes can be found in recent reviews and original papers [123, 124, 125].

The results which appear most interesting from the standpoint of friction relate to the structural transformations
of surfaces subjected to electromigration. For example, the atomic steps which initially were more or less uniformly
distributed over the surface can gather into rather dense bunches in the course of electromigration. The step bunches
are separated by wide flat terraces. This process is sensitive to presence of adsorbed layers and atomic islands on the
surface. The step bunching on surfaces due to electromigration can be treated as emergence of dissipative structures
[126]. Of course, the transformations that occur with surfaces in the friction contacts need not be the same as in
the case of surface electromigration. However, the existence of basic parallels between electromigration and friction
processes suggests that it may be productive to consider the effects observed in both the cases in a general approach.
Namely, they may be treated as results of self-organization of matter under nonequilibrium conditions.

Finally, let us summarize the information presented in this section. What benefit can the tribologists derive from
data on surface processes? The answer is that without a deep insight into the physics of these processes, the friction
problems cannot be properly understood. The most important evidence relevant to problems of friction is as follows.
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is shown by dashed line. Ba structures corresponding to the peculiarities seen in the profile are also indicated. The
region of the first-order phase transition (PT-I) is shaded. ICS are incommensurate structures [114].

 

Figure 14: The “unrolling carpet” mechanism of surface diffusion.

• Atoms and molecules at surface interact with the substrate and with each other through a number of mechanisms.
Some of the interactions may be far-ranging, anisotropic, oscillating with distance and substantially dependent
on the chemical nature of the substrate and adsorbate.

• Superposition of these interactions gives rise to a rich diversity of the surface structures formed by adsorbed
particles and of the phase diagrams of adsorbed films.

• The energy exchange between the adparticles and the substrate is mainly due to excitation of phonons in the
substrate through the one-phonon mechanism. The rate of this damping decreases fast with the distance of the
adatom from the substrate.

• The interactions between the adsorbed particles result in pronounced collective effects within the adlayers. They
find particularly strong manifestations in surface diffusion. Its kinetics depends dramatically on the adparticle
concentration in submonolayers and on the distance from the substrate surface in multilayers.

• The collective diffusion mechanisms enhance the sensitivity of the diffusion rate to the presence of surface defects
and various impurities within the diffusing adlayers [127]. This effect may be essential for understanding the
changes in the lubricant characteristics that occur due to wear of the rubbing surfaces.

• Diffusion in the adlayers is accompanied by their dynamical self-organization, which exerts a substantial effect
on the general scenario and the outcome of the diffusion process.

4 Static friction

As was emphasized in the Introduction, the static friction is determined by the structure of the interface, where the
sliding will occur. A simple analysis shows [128, 129] that for the contact of two commensurate and perfectly aligned
surfaces one has fs 6= 0, although the magnitude of fs decreases exponentially with the length of the common period.
For non-rigid substrates, the value of fs is typically lower than that for the rigid substrates because of the decrease of
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Figure 15: Diffusion of Li out of an initial step (θmax = 3.2) on the Mo(011) surface precovered with a base (θ = 0.8);
the curves 1 to 5 are coverage profiles. Inset: displacement of the leading edge versus t1/2 (t is time) for θ = 1.07
(curve 6) and θ = 1.6 (curve 7). Data were obtained with V.V. Poplavsky.
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Figure 16: (a) Variation of friction coefficient µ with the length of n-alkane molecule (experiment). (b) Top part:
schematic model of an alkane molecule moving along the 〈110〉 direction on Au(111). Bottom part: variations of sliding
forces Fs(x) along the 〈110〉 direction on Au(111) for C10, C12, C14 and C16 molecules. (c) Theoretical dependence
showing the variation of amplitude of sliding force Fsmax with molecule length [121].

the activation energy for the moving atoms when they can push the substrate atoms apart to make a wider pathway
between them [128, 129] (the same effect was also observed for the kinetic friction [130, 131]).

In the case of a contact of two incommensurate rigid infinite surfaces, it must be µs ≡ fs/fload = 0 [132, 133,
128, 129]. When there are two bare surfaces which are not rigid (as, e.g., in the case of “dry” friction, when there
is no lubricant between the substrates), an analog of the Aubry transition (see above Sec. 2.4) should occur with the
change of stiffness of the substrates (or the change of the load [134]). This effect was observed in simulation [133]:
the surfaces are locked together for a weak stiffness, and freely slide one over another in the case of high stiffness.
The simulations show a large variation of the friction with relative orientation of the two bare substrates (Hirano and
Shinjo [135], Robbins and Smith [136]). Similarly to the 1D FK system, where the amplitude of the Peierls–Nabarro
barrier is a nonanalytic function of the atomic concentration, in the 2D system the static frictional force should be the
nonanalytic function of the misfit angle between the two substrates and the pulling direction. This was pointed out by
Gyalog and Thomas [137], where the 2D FK–Tomlinson model was considered. However, surface irregularities as well
as fluctuations of atomic positions at nonzero temperatures makes this dependence smooth and less pronounced. For
example, MD simulation due to Qi et al. [140] of the Ni(100)/Ni(100) interface at T = 300 K showed that for the case
of perfectly smooth surfaces, the π/4 rotation leads to a factor of 34 ÷ 330 decreasing of static friction. However, if
one of the surfaces is roughed with the amplitude 0.8 Å, this factor reduces to 4 only, which is close to values observed
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experimentally. Müser and Robbins [133] noted that for a contact of atomically smooth and chemically passivated
surfaces, realistic values of the stiffness are above the Aubry transition point, so it should be fs = 0 for such a contact.
An approximately zero static frictional force was actually observed experimentally in the contact of tungsten and
silicon crystals [138]. More recently the FFM experiment made by Dienwiebel et al. [139] demonstrated a strong
dependence of the friction force on the rotation angle for a tungsten tip sliding over a graphite surface. This result
was explained in the following way: a thin flat flake of graphite, parallel to the natural lattice planes of graphite, is
transferred to the tip, so that the sliding occurs in fact between the incommensurate relatively rotated graphite layers.

For two disordered but smooth rigid surfaces (e.g., a contact of two amorphous substrates) one has Fload ≡
Nsfload ∝ A and Fs ∝ N

1/2
s , so that µs ∝ A−1/2. This prediction was checked with simulation by Müser et al.

[128, 129]. Thus, we again come to the fs → 0 result for the A→∞ limit.

For a finite-size contact , Sørensen et al [141] in MD simulations of “dry” friction of a Cu tip over the Cu(111)
crystal surface, have found that for nonmatching surfaces (obtained by rotation of the tip relative to the substrate)
a local pinning can occur at the corners of the interface (i.e., similar to the pinning of free ends of the finite 1D FK
chain). Therefore, in this case one should expect Fs ∝ N1/2

s , so that fs ≡ Fs/Ns ∝ A−1/2 and µs ∝ A−1/2 → 0 in the
A→∞ limit.

If one takes into account the elasticity of the substrates, then the fs → 0 prediction should not change — the two
flat smooth solid surfaces should exhibit no static friction. Moreover, the same remains true even if there are point
defects (impurity atoms or vacancies) at the interface, at least when the defect potentials are relatively weak. This
was shown by Sokoloff [142, 143] with the help of scaling arguments. Indeed, let E1 be a gain in energy due to sinking
of the defect to a nearest interfacial potential minimum at the interface, and E2 be the increase in the elastic potential
energy of the substrate due to atomic displacements of the substrate atoms around the defects (i.e., the elastic energy
of the so-called Larkin–Ovchinikov domain [144], which is the region over which the solid distorts to accommodate the
defect). Estimations (Persson and Tosatti [145], Caroli and Nozières [146], Sokoloff [143]) show that these domains
are as large as the interface, so that E2 � E1, i.e., the elastic energy is much larger than any atomic-scale energy
due to point defects. This prevents the two solids to be pinned together, because the forces at randomly distributed
pinning sites tend to cancel each other. Since all that remains are fluctuations, this implies that again Fs ∝ A1/2 and
µs → 0 in the A→∞ limit. A scaling analysis due to Sokoloff [143] shows that even fluctuations in the concentration
of atomic–level defects at the interface do not lead to nonzero fs.

According to Sokoloff [143], the sliding of a 3D solid over another 3D substrate just belongs to a marginal case
in the scaling theory, i.e., the dimension 3 is just the critical one. When the length scales are increased, neither the
elasticity nor the substrate force becomes irrelevant. Whichever one dominates at one length scale will dominate at
all scales. Thus, there exist only two regimes: a weak pinning regime, when the elastic forces dominate over the
interfacial forces (and the Larkin length is effectively infinite), and a strong pinning regime in which the interfacial
forces dominate and the Larkin length is effectively very small. The case of atomically flat surfaces and weak defect
potentials corresponds to the former regime and exhibits no static friction (Fs ∝ A1/2 so that µs ∝ A−1/2). Thus, it
should be expected zero or very small static friction in most cases. This prediction, however, strongly contradicts to
numerous experiments.

However, Sokoloff [142, 143] has pointed out that the situation is just opposite for the case of contact of micrometer-
length-scale asperities. In this case E2 � E1, because a pair of asperities from the two surfaces in contact can be
atomically matched by moving the asperity parallel to the interface a distance of the order of an atomic spacing, which
leads to a negligible cost in elastic potential energy. Thus, the case of micron-scale asperities belongs to the regime of
strong pinning, and there is static friction (Fs ∝ A so that fs > 0).

Recently Sokoloff [147] used the scaling arguments to explain the mechanism of boundary lubrication as well. The
idea is that lubricant molecules make the surfaces more smooth, e.g., due to filling the holes between the two rough
surfaces in contact. This results in the force pushing the surfaces together being supported over a larger area of real
contact, which may switch the interface from the strong pinning (i.e., high static friction) to weak pinning (i.e., low
friction) regimes.

A further subtle question is about the value of fs at T > 0, because in this case for any finite size of the
contact the mobility is nonzero. It is exponentially small if the activation energy ∆εs is smaller than kBT , and
relatively high otherwise. To distinguish the fs = 0 and fs 6= 0 cases, one has to study the scaling of fs with the
system size. In the “thermodynamic” limit A → ∞ the value of µ should tend to zero in the sliding state and
remain finite in the locked state. This question was studied by Müser and Robbins [133]. The authors pointed out
that for the contact of two commensurate surfaces ∆εs ∝ A (and, thus, µs 6= 0 in the A → ∞ limit) even when
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the substrates are separated by a “fluid” lubricant. Indeed, the interaction of the substrates is screened due to
the lubricant and, therefore, it may strongly decrease with increasing of the lubricant width (typically according to
exponential law), but the proportionality ∆εs ∝ A still remains valid. In more details, the periodic potential of one
surface induces a commensurate density modulation parallel to the surface in the lubricant. The magnitude of the
density modulation decreases exponentially with the distance from the first surface, but remains finite. The second
surface, whose periodicity is commensurate with this modulation, should always feel a periodic force that pins the
substrates together. The simulations by Curry et al [149] and Müser and Robbins [133] confirm this result. The
exponential decrease of fs with the width of the ideal crystalline lubricant film was also observed in the hard-lubricant
simulations (see Fig. 45 of Sec. 5.6).

Thus, analytical approaches based on elastic theory predict that in most cases the static frictional force is zero
or very small. This is so for the contact of atomically flat surfaces, except an unrealistic case of the commensurate
perfectly aligned surfaces. Moreover, the contact of rough surfaces is also characterized by zero fs, except of Sokoloff’s
statement about micrometer-length-scale asperities. The conclusion about zero static friction, however, does not agree
with numerous experiments. To explain the experimentally observed nonzero values of fs, let us recall that there
always exists a lubricant or other “third-bodies” between the surfaces in contact. Then, because the local pressure
at asperities is huge, it results in plastic deformation of the lubricant (and, may be, the asperities as well [148]),
making a contact locally “commensurate”. Simulation results (see Sec. 5.6 below) indicate that typically there are
<∼ 50% “commensurate” atoms at the sliding interface which pin the substrates together. Moreover, Müser et al.
[128, 129, 133] pointed out that already introducing of mobile atoms of a concentration θ ∼ 0.2 into the interface
between incommensurate (even completely rigid) or disordered surfaces leads to nonzero fs and makes the Amontons
law to operate (i.e., µs becomes independent on A and load). Of course, other possible “third-bodies” may play
the same role. The lubricant atoms can accommodate the surface corrugation of both walls simultaneously, i.e., they
occupy the “++” positions, where the lubricant atoms lie at the minima of potentials from both surfaces; this locks the
two surfaces together. The simulation [133] showed that now the motion of the top substrate is diffusional (no pinning)
at large T , but the substrates become locked together when the temperature decreases, or the load increases, or the
size of the system increases; the latter indicates that ∆εs ∝ A (in fact, the authors of [133] observed in simulation not
the complete locking of two substrates but a crossover from the free diffusion to a subdiffusional motion of the top
substrate, 〈δx2

top(t)〉 ∝ tα with the exponent α ≈ 0.2). An interesting observation is that the lubricant itself need not
be in a crystalline or glassy state to produce the pinning of the substrates. However, the question whether the locking
exists for all T in the thermodynamic limit (as it is for the commensurate surfaces), or there is the locked-to-sliding
transition with increasing of temperature, still remains open. Sokoloff [143] also noted that if the lubricant is inserted
into the interface between two asperities in contact according to the picture described above, then the value of µs
could be very small (µs ∼ 10−5) comparing with what is typically observed experimentally. Moreover, as was pointed
out in [150], the Müser-Robbins mechanism of static friction will operate only when the lubricant atoms are inserted
between two identical substrates and interact approximately with the same strength with both of them. Otherwise,
if the lubricant atom interacts stronger with one of the substrates, it will stick to that substrate, and in this case we
come back to the situation described above — the contact of two substrates with static defects, which should exhibit
no static friction.

5 Kinetic friction

As usual in computer simulation, one can use two simulation techniques to study tribological systems, the Monte Carlo
(MC) method or the MD technique. The MC technique provides the equilibrium configuration of the system (Schoen
et al. [37, 38, 39]) and, therefore, it can be used to find the static frictional force. The MD technique is rigorous for
nonequilibrium systems, but it is much more time consuming. It was developed in two versions, the Grand Canonical
Ensemble Molecular Dynamics (GCMD) method and the Molecular Dynamics method based on Langevin equations.

The GCMD method was developed by Gao et al. [40, 41, 42]. The three-dimensional computational cell for the
GCMD simulation of the confined lubricant is shown in Fig. 17. The cell is repeated using 3D periodic boundary
conditions. It contains rigid substrates (shown by small spheres in Fig. 17) of finite extent in the x direction and
extending through the cell in the y direction. The dimension of the cell in x direction (Lx) varies dynamically in
response to the applied external pressure in that direction, taking different values depending on the gap width d
between the opposing solid surfaces. The width d is kept fixed in a given simulation run. The cell is filled with a
liquid lubricant. A part of its molecules is in the confinement and the rest outside it. Lx is taken to be large enough
such that bulk liquid behavior can be established in the regions outside the confinement. The motion equations are
Newtonian; the temperature can be controlled via scaling of atomic velocities at initial part of the run. This technique
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is best adjusted to study lubricant structure as a function of the gap width d. The structure (liquid or solid) can
be determined by calculation of the structure factor, the diffusion coefficients, and from the response to shear stress
applied to the substrates.

Figure 17: The computational cell used in the Grant Canonical Ensemble Molecular Dynamics method (from Gao et
al. [40]).

The MD technique based on Langevin equations was developed by Robbins et al. and used in a series of studies
[151, 152, 43, 153, 44, 154, 155, 156, 128, 133, 129, 130, 131]. In the present review we describe only this variant of the
MD technique (with an improvement proposed by Braun and Peyrard 2001 [157]). Moreover, we will concentrate on
simple models of the lubricant and substrates in order to pick up the main physical aspects of the problem. A rather
detailed list of MD simulation results with applications to experimentally studied systems can be found in the review
papers [8, 10].

A serious restriction of the MD technique is that it typically uses periodic boundary conditions with a fixed number
of particles. However, a trick with finite-size substrates in the GCMD as described above, or the one with a curved
substrate (see below) helps to overcome this problem, at least partially.

5.1 Molecular dynamics model

A typical three-dimensional system for tribology simulation comprises a few atomic-layer lubricant film between two
(top and bottom) substrates as shown in Fig. 18. For example, in the approach proposed in Ref. [157], each substrate

F f Nload load s=

kspring

F fN= s
vdrive

rigid top
substrate

deformable
top substrate

lubricant

deformable
bottom substrate

rigid bottom
substrate (fixed)

V rll ll,

,V rsl sl

,V rss ss

Figure 18: The model used in MD simulation of friction. Each substrate consists of two layers, the rigid layer and
the deformable substrate layer which is in contact with the lubricant. The lubricant atoms fill the space between the
substrates. The atoms of the rigid layer of the bottom substrate are fixed, while the rigid layer of the top substrate
can move due to applied forces.

consists of two layers. The rigid layers form the boundaries of the system, while deformable substrate layers are in
contact with the lubricant. Each rigid substrate part has Ns atoms henceforth called s-atoms organized into, e.g.,
a square lattice with the lattice constant as. The atoms of the bottom rigid substrate part are fixed while the top
substrate part moves rigidly. Between the rigid substrate parts we insert atoms of two different kinds: 2Ns s-atoms
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model the surfaces of the substrates and N = NalNl l-atoms (“lubricant” atoms) form the lubricant film. Periodic
boundary conditions are used in the x and y directions.

In such a model with periodic boundary conditions, unfortunately, the results could be sensitive to the number
of lubricant atoms N : if N does not match exactly the number of atoms in closely-packed layers, then extra atoms
or vacancies will produce structural defects, especially in small systems accessible in the simulation. To reduce
uncertainties due to this difficulty, one may use a geometry with curved substrates (Persson and Ballone [158]). For
instance, in the system shown in Fig. 18 the z-coordinate of the rigid layer of the top substrate varies as

z = Z2 +
1
2
hxrsl

[
1− cos

2π(x−X2)
Lx

]
+

1
2
hyrsl

[
1− cos

2π(y − Y2)
Ly

]
. (17)

Here Lx,y is the size of the system in the x or y direction, hx,y are the corresponding curvature parameters, and
X2, Y2, Z2 are the center of mass coordinates of the rigid layer of the top substrate. A similar expression can be used
for the z coordinate of the bottom substrate. Such a geometry is also more close to a real situation, where the surfaces
are often rough.

To each atom of the rigid layer of the top substrate we apply a force consisting of a driving force f along the x
axis and a loading force fload along the z direction. The driving force f may either correspond to the dc force applied
directly to the atoms (in the constant-force algorithm), or it may correspond to a spring force, when a spring of elastic
constant kspring is connected to the top rigid layer, and its end moves with a constant velocity vs (the algorithm with
the attached spring).

Equations of motion. First of all let us explain why we have to use the Langevin motion equations in the study
of the far-from-equilibrium state of the driven system. In order to achieve the thermally equilibrium state in a 3D
model using Newtonian equations, one has to consider � 103 atoms (at the present stage computer simulation allows
one to model ∼ 106 atoms maximum). Therefore, realistic simulation times would be of the order <∼ 10 τ0 ∼ 10−12 s.
These times are too short even for reaching the steady state, and of course they are very far from typical experimental
times. Also, anyway the approach with solely Newtonian equations cannot incorporate electron-hole damping as well
as other lost degrees of freedom.

The kinetic friction is due to energy losses. They are produced at the sliding interface, and then the energy must
go away from the interface to the substrates, where it will be absorbed being transformed into the internal degrees
of freedom of the substrates (phonons, e-h pairs). Finally the heat has to be removed from the system. Thus, we
cannot use solely Newtonian equations, because the external driving will increase the system energy up to infinity.
A standard approach in such situations is to model the substrates as made of many atomic layers, and then to use
the Langevin equations for a few layers far away from the interface (below in Sec. 6.1 we describe such an approach).
However, in simulation it always exists the competition “large system ←→ long times”. Because the most important
task is a detailed modelling of the interface itself, there are no reasons to include too many substrate layers. Therefore,
it is reasonable to use the Langevin equations for the lubricant atoms and for the atoms of one or only few substrate
layers, while all other missed degrees of freedom can be treated implicitly through an external damping coefficient in
the Langevin equations.

However, a critical question is how the external damping coefficient ηext in the Langevin equations is defined,
because it is just its value that determines the rate of energy flow out of the friction zone and, finally, governs
the kinetic friction. If thermal equilibrium is of interest, an actual value of ηext is irrelevant (although the rate of
approach to equilibrium depends on damping and achieves a maximum at ηext ∼ ω0). In their numerous simulations
[151, 152, 43, 153, 44, 154, 155, 156, 128, 133, 129, 130, 131], Robbins and coauthors used the following trick: the
Langevin damping is applied only to the degrees of freedom that are perpendicular to the sliding direction, and the
authors claim that the actual value of the coefficient does not affect the results. It could be so at high temperatures,
e.g., close to or above the bulk melting temperature of the lubricant, as was simulated in those studies, because the
atomic interaction is highly anharmonic under such circumstances. In a general case, however, more reliable results
should be expected, when one uses a realistic damping that depends both on the coordinate z of a given atom (i.e., on
its distance from the substrates) and on its velocity v with respect to the substrates, since the probability of excitation
of phonons in the substrates depends on the relative velocity of the lubricant atom as compared with the phononic
(sound) speed in the substrate (see Sec. 3).

Now let us describe the standard set of equations used in tribological simulations [157]. The Langevin motion
equations for all “mobile” atoms have the form

mαr̈iα = f
(int)
iα +

2∑

S=1

fiα,S , (18)
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where α = s or α = l for “substrate” or “lubricant” atoms respectively. The force f (int) is due to interaction between
the mobile atoms in the system,

f
(int)
iα = − ∂

∂riα

all∑

i′α′
Vα′α(ri′α′ − riα). (19)

The last term in Eq. (18) describes the interaction of a “mobile” s- or l-atom with the bottom (S = 1) and top (S = 2)
substrates. The force fiα,S itself consists of three contributions as usual in Langevin equations,

fiα,S = f
(int)
iα,S + f

(fric)
iα,S + f

(ran)
iα,S . (20)

The first contribution f
(int)
iα,S comes from the potential interaction of a given (ith) atom with all “immobile” atoms of

the Sth (bottom or top) rigid substrate,

f
(int)
iα,S = − ∂

∂riα

NS∑

i′=1

Vsα(Ri′S − riα), (21)

where the sum now includes all “immobile” s-atoms of the corresponding substrate and Ri′S is the coordinate of the
i′th atom of the Sth rigid substrate. The second and third terms in Eq. (20) describe the energy exchange between
mobile atoms and the rigid substrates, which approximately take into account the missing degrees of freedom of the
substrates. The term f

(fric)
iα,S describes a viscous damping when an atom moves relative the corresponding substrate,

f
(fric)
iα,S = −mαη (zrel, vrel)

(
ṙiα − ṘS

)
, (22)

where η (zrel, vrel) is the external damping coefficient, zrel = (−1)(S−1)(ziα − ZS), vrel = ṙiα − ṘS , and RS ≡
{XS , YS , ZS} is the center of mass coordinate of the Sth substrate (for the bottom substrate R1 ≡ 0). Finally,
the third contribution f

(ran)
iα,S in Eq. (20) describes the random (Gaussian) force acting on the ith atom from the Sth

substrate. Its amplitude is determined by the substrate temperature T , i.e., the corresponding correlation function is

〈f (ran)
iα,S (t) f (ran)

i′α′,S′(t
′)〉 = 2ηR(. . .)mαkBTδii′δαα′δSS′δ(t− t′). (23)

Here the function ηR(. . .) is coupled with the external damping coefficient η(. . .) by the relationship [159, 94]

ηR(z, v, T ) =
∫ ∞

0

dε e−ε η(z, ṽ(ε)), ṽ2(ε) = v2 +
2kBT
mα

ε. (24)

Finally, motion of the rigid layer of the top substrate is described by the Newtonian equation

MsR̈2 = Nsfext + FS , (25)

where Ms = Nsms is the mass of the rigid layer of the top substrate, fext = {f, 0, fload} is the external force applied
to it, and FS = −∑all

iα fiα,S=2 according to third Newton law (conservation of the total momentum of the system).
Parameters of the model. Most of the simulation results presented below are given in “natural units” (n.u.) which

correspond to atomic-scale values, i.e., the numerical values of the model parameters have been chosen such that,
if energy were measured in Electronvolts and distances in Angströms, we would have realistic values for a typical
tribological system. The results described below were obtained, following Ref. [157], for all atoms interacting via a
6-12 Lennard-Jones pairwise potential

V (r) = Vαα′

[(rαα′
r

)12

− 2
(rαα′

r

)6
]

(26)

where, however, the parameters of the potential (26) are different for different kinds of atoms. Between two substrate
atoms we use Vss and the equilibrium distance is rss = as, between two lubricant atoms, Vll and rll, and the interaction
of the lubricant atom with the substrate atom is described by the parameters Vsl and rsl.

It is useful to couple the natural units with the Systeme International (SI). The basic parameters that are unchanged
in the simulations, are the amplitude of interaction within the substrates (Vss = 3), which sets the energy parameter,
the substrate lattice constant (as = 3) that sets the length scale, and the mass of lubricant atoms (ml = 1) as the mass
parameter. Then, we have for the unit of length 1 m = 1010 ν−1

r n.u., for the unit of mass 1 kg = 6×1024 ν−1
m n.u., for
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the unit of energy 1 J = 6.25×1018 ν−1
e n.u., for the unit of force 1 N = 6.25×108 (νr/νe) n.u., for the unit of pressure

1 Pa = 6.25×10−12 (ν3
r/νe) n.u., for the unit of time 1 s = 0.98×1013

(
νe/νmν

2
r

)1/2 n.u., and for the unit of velocity
1 m/s = 1.02×10−3 (νm/νe)

1/2 n.u. (the coefficients νe ∼ νr ∼ νm ∼ 1 were defined in Ref. [157]). In particular,
the load force fload = −0.1 n.u. corresponds to the pressure P = −fload/a

2
s = 1.11×10−2 n.u. = 1.78×109 Pa. To

compare with experimentally used values, note that a realistic pressure is P ∼ 107 Pa, and the maximum pressure
above which the plastic deformation begins, is P ≈ 2×108 Pa for gold (a minimal value for metals), P ≈ 109 Pa for
steel, and P ≈ 1011 Pa for diamond (the largest possible value). As for velocities, a typical value when the transition
from stick-slip to smooth sliding is observed experimentally, is vc ∼ 1 µm/s = 10−9 n.u.

The relation between the two parameters, Vsl ↔ Vll, is the most important issue of the tribological system, because
it determines the behavior of the lubricant at sliding. In the case of a “soft” lubricant, Vll � Vsl, two lubricant layers
are strongly coupled to the substrate surfaces, and the sliding should occur somewhere at a middle of the film’s width.
As a result, the lubricant is melted at sliding, and the stick-slip motion corresponds to the melting–freezing mechanism.
Qualitatively different behavior exhibits the “hard” lubricant, when Vll > Vsl. In this case the lubricant remains in
the solid state during sliding, the sliding takes place at the lubricant–substrate interface, and the stick-slip is due to
inertia mechanism. In the simulation results presented below, other model parameters are typically the following. The
interaction between the substrate and the lubricant is always much weaker, Vsl = 1/3, than the interaction within
the substrate; that prevents the substrates from wearing. For the lubricant itself, we consider two cases: the soft
lubricant with Vll = 1/9 and the hard lubricant with Vll = 1 although, in both cases, the lubricant is less rigid
than the substrates. The equilibrium distance between lubricant atoms is rll = 4.14, i.e., it is “incommensurate”
with the equilibrium atomic distance in the substrate. The parameter rsl characterizing the interaction between the
substrate and the lubricant is rsl = 1

2 (rss + rll) = 3.57. For the atomic masses, it is used ml = ms = 1, which gives a
characteristic frequency of ωs = [V ′′ss(rss)/ms]

1/2 = 4.9 and a typical period of τs = 2π/ωs = 1.28.
For the external damping in the Langevin equations, Braun and Peyrard [157] proposed to use the expression

ηext(z, v) = η1(z)[ηph(v) + ηeh], (27)

where η1(z) describes the exponential decrease of the damping when an atom moves away from the substrate, η1(z) =
1− tanh[(z− z∗)/z∗], and the characteristic distance z∗ was chosen as the distance between the layers in the substrate
(z∗ = 2.12 in the simulation). Thus, for the atoms in the s-layer, where z ≈ z∗, we have η1 ∼ 1, while for the
atoms in the utmost (closest to the substrate) lubricant layer we obtain η1 ∼ 0.1. For the velocity dependence of the
one-phonon damping it was proposed to use ηph(v) = η(2πv/a) with a = as for the motion along the substrate (i.e.,
the atom vibrates with the washboard frequency ωwash = 2πv/as when it slides over the substrate periodic potential)
and a = z∗ for the motion in the z direction, where the function ηph(ω) is given by Eqs. (11,12) of Sec. 3 [the cutoff
(Debye) frequency was taken as ωm = 15]. Of course, such an approach is not rigorous. First, the dependence (11)
was derived for vibrations of a single adatom. Thus, it can be applied for the case of amorphous structure of the
lubricant, while for the case of crystalline structure one has to take into account the conservation of momentum in
phonon scattering. Second, the substitution of the washboard frequency is also approximate. In a rigorous approach
we have to use a nonlocal retarded response function instead of the local damping coefficient. However, although
the described approach is not rigorous, it is much more realistic than the using of some artificial constant damping
coefficient. Finally, the damping due to creation of electron-hole pairs in the metal or semiconductor substrate was
taken as ηeh = 10−2ωs.

In the model described above as well as in most models used in tribology simulations, the utmost substrate
layers are rigid. Although their phonon degrees of freedom are included implicitly through the damping coefficient,
we nevertheless totally loss their elasticity. Of course, this is typical for MD simulations: the elastic interaction is
long-ranged, thus it is almost impossible to include it rigorously in a MD model. An elastic interaction between the
lubricant atoms may in principle be included artificially, e.g., by adding a corresponding term to the interaction (26).
Besides, for the tribology system under a high load the elastic deformation of the substrates at the contact may be
of great importance. Persson and Ballone [158] proposed to connect the rigid and mobile substrate layers by artificial
springs, which have both longitudinal and transverse stiffness and thus model the elastic properties of a semi-infinite
substrate. This approach works well in modelling of static properties of the system, such as the lubricant structure,
the static frictional force, and even a slow process of squeezing of the lubricant. As for modelling fast processes that
occur during sliding, such approach may lead to artificial results, because a continuum acoustic phonon spectrum of
the substrate is substituted by the spring with a single frequency, which may come in resonance with the washboard
frequency of the sliding system.

Finally, comparing the GCMD method with that described above, we should note that they are quite close one
another. The GCMD uses the (P,E,N) ensemble (i.e., with the constant pressure, energy and the number of atoms),
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while Robbins’ approach operates with the (P, T,N) ensemble (i.e., with constant temperature). A problem with the
constant-energy ensemble is that it cannot be used for kinetics, because the pumped energy will destroy the system if
it is not removed by some artificial methods. Another essential difference between these two methods is the following.
In the GCMD method the external “load” is applied in fact to the x sides of the simulation cell (the size Lx is varied
dynamically to keep a given pressure), while the width d of the lubricant film is fixed. In the Robbins’ model the x
and y sizes are kept fixed, and the load is applied to the substrates, so that the pressure is again kept constant, but
now the lubricant width is changed dynamically to adjust to a given pressure, the number of atoms and the available
space in the xy box.

5.2 Melting of a confined film

As was mentioned in Sec. 2, a thin film of a few molecular diameters width is often solidified, because the confinement
decreases the entropy of the film and shifts the bulk melting transition to higher temperatures (Gee et al. [18],
Thompson et al. [43, 44]; Gao et al. [40, 41, 42], see also [4, 7] and references therein). The SFA high precision
experiments [160, 161, 162] confirm such a behavior. Theoretically, a continuum approach based on a Ginzburg–
Landau expression for the free energy and a mean-field theory [163] provides a qualitative explanation of this effect.
Another analytical approach based on the Lindemann criterion and the confinement of the fluctuations by the walls also
provides a qualitative [164] and even quantative [165] description of the melting of a thin confined film. However, recent
experimental studies [166] have shown that the confinement-induced “solid” does not have a well defined structure.
In this section we describe, following Ref. [165], the melting process of the lubricant as follows from MD simulation.

An important parameter of the lubricant, available in experiment and connected to its thermodynamic state, is its
specific volume. For the confined lubricant, only the thickness of the film can change and, therefore, the variation of
the specific volume shows up in the variation of the coordinate ztop of the top substrate. Figure 19 shows the variation
of ztop when the initial GS configuration is adiabatically heated and then cooled down. For the lubricant thicknesses of
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Figure 19: Vertical coordinate ztop of the top substrate as a function of temperature for different lubricant film
thicknesses, in the case of the soft lubricant (Vll = 1/9, left panel) and the hard lubricant (Vll = 1, right panel).

Nl = 1 to 5 layers, the general behavior of the system is the same. While heating, a sharp increase of ztop is observed
at a temperature Tm that depends on Nl as shown in Fig. 20. While cooling the soft lubricant, its behavior depends
on the number of lubricant layers: for Nl = 1 or 2 a sharp transition that brings the system back to lower values is
found, while for larger Nl, ztop decreases smoothly. The fits of the Tm(Nl) dependences shown in Fig. 20, lead in the
Nl →∞ limit to values in a good agreement with the bulk values of the melting temperature obtained by the Monte
Carlo calculations of the LJ solid. Therefore, the transition observed during heating appears to be consistent with the
melting transition.

The analyzing of atomic trajectories at the transition shows that the increase of film thickness is due to the
formation of an additional layer in the film (see Fig. 21, left panel) that agrees with experimental observation [161].
Moreover, looking at Fig. 21 one can notice that even in the high temperature “liquid” phase the lubricant is still
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Figure 20: The melting temperature Tm as a function of the number of lubricant layers for fload = −0.1. The filled
markers correspond to MD simulation results while the open markers are the theoretical values from [165]. The solid
curves describe the fits Tmelt = 0.405 + 0.165/Nl for the hard lubricant and Tmelt = 0.045 + 0.350/Nl for the soft
lubricant.

organized into layers, again in agreement with experiments and other simulations.
In order to distinguish the solid and liquid phases, experiments with a small shear force are most often used.

Figure 22 shows that below Tm the lubricant behaves like a rigid body, with only a negligible displacement under the
shear stress, while for T > Tm the top substrate takes a non-zero equilibrium velocity, indicating a fluid lubricant.
However, Fig. 21 also indicates that the properties of the “solid” lubricant phase are not trivial. Following trajectories
of the particles in the MD simulation, one can notice many jumps from one lubricant layer to another, even at
temperatures T � Tm. The high mobility of the lubricant atoms is also attested by the calculation of their diffusion
coefficient versus T . The average diffusion coefficient parallel to the layers D‖ and the diffusion coefficient orthogonal to
the layers Dz, which is one order of magnitude smaller than D‖ but nonzero, both show a similar temperature variation.
The diffusion coefficient increases sharply when T reaches the melting temperature, but it is already rather large for
T < Tm. In this domain its temperature dependence may be approximated by an Arrhenius law D ∝ exp(−Ea/T )
with Ea ≈ 0.16, indicating an activated process (it is interesting that, according to simulation, Ea ≈ kBTm). A high
diffusion in the solid confined film was observed experimentally [166]. Thus, MD simulations as well as the experiments
point out that the mobility of the atoms in a highly confined solid is much greater than in a bulk solid phase. This
can be understood qualitatively by the influence of the substrate which distorts the perfect solid configuration because
it is generally incommensurate with the solidified film. Therefore, the solid phase of the film is formed of ordered
domains separated by grain boundaries, or discommensurations. Within these discommensurations the atomic density
is generally lower than in the ordered domains, leaving vacant space for diffusion.

When one cools down the melted film, Fig. 19 shows that it does not retrace the path observed during heating,
but demonstrates a large hysteresis between melting and freezing, as could be expected for the first-order melting
transition. For very thin films (Nl = 1 or 2), a sharp freezing transition is observed at a temperature significantly
lower than Tm. For the soft lubricant, the freezing restores the structure that the film had at the same temperature
before the melting transition. Hard lubricant films as well as thicker soft lubricant films freeze in a metastable state.
Figure 23 show sample configurations for a film having initially three layers (Nl = 3). In Fig. 23, one notices that a
defected 4-layer configuration persists below Tm, and when the film is cooled down to T = 0, a configuration having
three layers in one region and four layers in another is found. Annealing of such a configuration in the presence of
a small shear may bring the film back to its equilibrium state (see also Sec. 5.5). The qualitative difference between
the behaviors of narrow films (Nl = 1 and 2) and thicker ones (Nl ≥ 3) is due to the influence of the substrate. For
Nl = 1 or 2, all lubricant layers interact with the substrates which tend to impose a given configuration. This is not
the case for thicker films. The specificity of Nl = 2 with respect to higher values was also observed in experiments
attempting to decrease the thickness of a lubricant film by applying a strong pressure [160, 161, 162]. Pressure alone
is not sufficient to decrease the width below Nl = 3 but, by applying additionally a shear stress, the lubricant width
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Figure 21: Left panel: Time evolution of the z coordinates of all atoms at temperatures T = 0.08 (left part of the
figure) and 0.16 (right part of the figure) for the soft lubricant. The vertical lines which connect the layers show that
particles are changing layers. At T = 0.16, the time snapshot has been centered on the moment where the system
melts by creating a new layer. The figure shows that the transitions of the particles between layers become more
frequent while melting, but the change is not abrupt. Right panel: Diffusion coefficient of the particles along the
layers D‖ versus inverse temperature in semi-logarithmic scale.

can be decreased down to two layers.
In an actual tribological system, the surfaces are not perfectly flat. In order to study an influence of the quality

of the confining surfaces, simulations with curved surfaces were also performed [165]. In these cases the sharp jump
in ztop is no longer observed and is replaced by a smooth evolution. This effect has a simple explanation. The spatial
variation of the thickness of the film leads to the coexistence of domains that do not have the same number of layers.
The melting of these domains should occur at different temperatures, the thicker regions start to melt first and then
drive the melting of the thinner regions. Moreover, as the boundary between domains with different thicknesses is
full of defects in the atomic packing, they also contribute to preventing a well defined transition, and the melting is
blurred. However, the effect of substrate curvature is exaggerated by the small size of the simulated system. In an
actual experiment one can expect that flat surfaces will extend over hundreds of lattice spacing, allowing melting to
occur rather sharply.

The dependence Tm(Nl) can be calculated analytically with the help of a theory based on the empirical Lindemann
criterion. Recall that it states that melting starts when the amplitude of mutual displacement of nearest neighboring
atoms reaches some threshold value of order 10% of the lattice constant. At higher amplitude of vibrations the anhar-
monicity effects become too strong and destroy the crystalline order. In the case of a thin film, mutual displacements
are expected to decrease for the confined film, where the oscillations of the boundary atoms are suppressed. Therefore,
one expects the increase of the melting temperature as compared with the bulk value. Such a theory was developed
by Braun and Peyrard [165]. The calculations show that, as expected, the mutual displacements are maximal at
the lubricant–substrate interface for the hard–lubricant case, and at the middle of the soft–lubricant film where the
internal interactions are weaker than the interactions with the substrates. Then, using the Lindemann criterion, one
may assume that in the hard–lubricant system the melting starts at the interface, while in the soft–lubricant case the
melting starts in the middle of the lubricant. As one can see from Fig. 20, the agreement between the theory and sim-
ulation is fairly good. Moreover, the described approach can also be used to study the effect of the external pressure.
When fload 6= 0, the interatomic distances should correspond to the minimum of the potential Vf (r) = VLJ(r)−zfload.
When the load grows, the equilibrium distance corresponding to the minimum of Vf (r) decreases and, due to the
anharmonicity of the LJ potential, the strength of the interaction increases. This results in the increase of the melting
temperature with load as shown in Fig. 24.

Thus, the dynamics of the confined film is significantly affected by the substrates, both in the solid and in the
molten phases. The solid phase, able to sustain shear stress, shows intense diffusional motion of the atoms. The melting
temperature depends strongly on the confinement, and this dependence may be explained by a phenomenological
microscopic theory based on the Lindemann criterion.
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Figure 22: Comparison between the temperature variation of ztop and of the equilibrium velocity of the top substrate
when a small shear stress, f = 0.001 per one substrate atom of the rigid layer of the top substrate, is applied to the
system (soft lubricant, Nl = 3).

Figure 23: Configurations of the soft lubricant with Nl = 3 upon freezing at T = 0.13 (left panel) and after freezing
in a metastable configuration at T = 0 (right panel). Figures were produced with RasTop software [167].
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Figure 24: Dependence of the melting temperature on the load for the Nl = 3 system: comparison of the phenomeno-
logical theory with simulation data.

5.3 A soft lubricant: The melting-freezing mechanism

The first systematic MD study of sliding for two substrates separated by a thin lubricant film, based on Langevin
motion equations, has been done by Thompson and Robbins [151, 152]. The authors considered the case of the soft
lubricant, when the amplitude of molecular interactions in the lubricant, Vll, is weaker than the lubricant-substrate
interaction, Vsl. It was shown that for the film of width >∼ 10 molecular diameters at the temperature kBT = 1.1Vll
(which is about 30% above the bulk melting temperature), for the case of Vsl ≥ 2Vll one lubricant layer is locked to the
corresponding substrate (i.e., one layer is glued to the bottom, and one to the top substrate), while slip occurs within
the lubricant, between the first and second layers. If the lubricant–substrate interaction increases, e.g. for Vsl ≥ 15Vll,
then two (instead of a single) lubricant layers are glued to each (top and bottom) substrates. When the top substrate
is driven with a low velocity through an attached spring, the system dynamics demonstrates stick-slip motion due to
the melting–freezing mechanism.

In this section we describe the results of MD simulation of the soft–lubricant system based on the model of Sec. 5.1.
The simulations show that the behavior of a thick lubricant (of three or more layers wide) and a thin lubricant (less
than two layers wide) is qualitatively different.

5.3.1 A thick lubricant film (Nl ≥ 3)

In the case of the soft lubricant film (Vll = 1/9) of thickness larger than two atomic layers, the stick–slip motion
corresponds to the melting–freezing mechanism. At low driving the lubricant undergoes periodic shear–melting tran-
sitions and recrystallization, while at high velocities uniform sliding occurs where the film no longer has time to order
(Robbins et al. [4, 151]). However, a detailed MD study with the help of the constant-force algorithm shows that
there are two different steady-state sliding regimes, the “layer-over-layer” sliding (LoLS) regime, when the lubricant
layers keep an ordered structure at sliding, and the “liquid-sliding” (LS) regime, when the lubricant is melted due to
sliding. These two regimes exist for different intervals of the driving force.

When the top substrate is driven with a constant velocity through a spring, we observe the transition from the
stick-slip motion to the smooth sliding which takes place at vc <∼ 0.1 as shown in Fig. 25 for the Nl = 5 system. The
maximal frictional force fs during the stick-slip, fs ∼ 0.02, is lower than the static frictional force. This shows that
fs should grow with the time of stationary contact. During stick in the stick-slip regime, the lubricant is ordered in
a crystalline five-layer configuration, while the slip corresponds to the LoLS regime, and the sliding occurs typically
at the interfaces between the utmost and adjacent lubricant layers. At the onset of the smooth sliding regime, i.e.,
at vs = 0.1 for the parameters used in Fig. 25, the system dynamics also corresponds to the LoLS regime. When the
spring velocity increases, e.g., to the value vs = 0.3, the middle three layers 3D melt (although the lubricant keeps
the layered structure) while the utmost layers remain ordered. The distribution vx(z) exhibits a linear dependence
across the lubricant. With further growth of the spring velocity, the temperature (and “disorder”) of the lubricant
increases. The smooth sliding motion at vs � 0.1 corresponds to the liquid-sliding regime. The dependence of the
kinetic frictional force, the lubricant temperature and its width on the spring velocity are presented in Fig. 26 by stars.
Note that the kinetic frictional force very weakly changes with the spring velocity (and may even slightly decrease
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Figure 25: Dynamics of the Nl = 5 soft flat system with the attached spring of the elastic constant kspring = 3× 10−4

for three values of the spring velocity: v = 0.01 (left column), v = 0.03 (middle column), and v = 0.1 (right column).
The top row shows the spring force, the second row shows the velocity of the top substrate, the third row shows the
lubricant width, and the bottom row shows the lubricant temperature.

when the velocity increases).
Layer-over-layer sliding. The LoLS regime is observed in the constant-force algorithm, if one starts from the

vs = 0.1 smooth-sliding state of the spring algorithm (Fig. 25, the most right column). The simulation results are
presented in Fig. 26 by open circles. The LoLS regime is stable for velocities of the top substrate of the order of
vtop ∼ 0.1, namely for dc forces 0.03 < f < 0.11 (for fload = −0.1). The velocity remains within the interval
0.05 < vtop < 0.3; the system locks at lower forces/velocities and becomes unstable at larger ones (in the latter case
the lubricant structure is destroyed and either the system locks in a defective configuration, or the lubricant film
melts and the system goes to the liquid-sliding state). The lubricant effective temperature grows with the velocity
but remains lower than the melting one. Therefore, the lubricant is in a “solid” state; however, similarly to what
was observed during melting (Sec. 5.2), there is exchange of atoms between different lubricant layers in this “solid”
state. In the LoLS state the lubricant takes the well-defined configuration as, e.g., shown in Fig. 27 (left panel); the
utmost lubricant layers are glued to the corresponding substrates and move together with them, while the other three
layers slide (creep) one over another. This steady-state sliding is, however, not too stable. Due to atomic exchange,
the 2D atomic concentrations in the layers may vary during sliding, and when two adjacent layers occur to have close
concentrations, they become commensurate, lock together and move with the same velocity, while the main sliding
occurs at the most “incommensurate” interface.

Liquid sliding. The LS regime exists for dc forces f > 0.01; at lower forces the system locks in a metastable defective
configuration as that shown in Fig. 27 (right panel). The dependences of the system parameters on the driving velocity
are shown in Fig. 26 by solid circles. For a lower force f = 0.011, the system exhibits smooth sliding with vtop ∼ 1.
In this regime the two utmost layers are approximately ordered and glued to the corresponding substrates, while the
middle layers are 3D molten (see Fig. 27, middle panel). When the force increases to f = 0.012, the whole lubricant
becomes 3D molten, and vtop � 1. The sliding heats the lubricant to a temperature larger than the melting one, so
that the driving itself maintains the lubricant in the melted state.

Energy losses. Figure 28 shows the distribution of energy losses across the lubricant calculated by the method
described in Ref. [157]. The results are presented for two sliding regimes of the Nl = 5 system, the LoLS regime and
the LS regime. In both cases the largest losses are in the rigid substrate layers. In the LS regime, when the velocity
linearly changes with z, the losses are approximately uniformly distributed across the lubricant. However, in the LoLS
regime, where the sliding takes place mainly between the layers 1-2, 2-3 and 4-5 (while the third and forth layers move
together), the losses are large just where the sliding takes place as one could expect.

Transitions between different steady states. The sliding regimes described above, typically cannot be obtained with
the help of the constant-force algorithm by adiabatic increase of the driving if one starts from the annealed static
configuration. For example, for the Nl = 5 system the static frictional force, fs ∼ 0.02 ÷ 0.09, is much larger than
driving forces in the steady-state regimes. Therefore, the lubricant film melts just when it begins to move at f = fs,
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Figure 26: Kinetic frictional force (a), the lubricant “temperature” (b), and the width of the lubricant film (c) as
functions of the driving velocity for the soft Nl = 5 (left panel) and Nl = 3 (right panel) systems with flat geometry.
Stars show the data obtained with the help of the spring algorithm, while circles and dash curves show the results
obtained with the constant-force algorithm (open circles are for the layer-over-layer sliding regime, and solid circles
are for the liquid-sliding regime).

Figure 27: Configurations of the Nl = 5 soft lubricant with flat geometry. Left panel: the configuration during layer-
over-layer sliding at f = 0.008. Middle panel: the configuration in the liquid sliding at f = 0.011. Right panel: the
configuration when the system locks at f = 0.01 after the LS state.

the two substrates split one from another, and the velocity vtop of the top substrate goes to infinity. Moreover, the
LoLS regime cannot be obtained from the LS regime too, the liquid-sliding state locks when the driving decreases
adiabatically. The only transition observed with the adiabatic change of the force, is the one from the LoLS state
to the LS state with the increase of the driving force. However, both sliding regimes are observed in the simulation
with the spring algorithm, when the spring force decreases after the slip onset. Note also that for the thinner Nl = 3
lubricant, the LoLS regime is more stable than for a thicker (Nl = 5) one.

Sliding-stimulated ordering of the lubricant. When the lubricant slides due to driving through the attached spring
at a low velocity, it can self-order as, e.g., is demonstrated in Fig. 29. For example, if one starts from an annealed
configuration like that shown in Fig. 30 (left panel), which corresponds to the starting point “α” of Fig. 29, then the
sliding begins when the spring force achieves the value f ∼ 0.09, while the typical driving force is about f ∼ 0.01
for smooth sliding. In the result, the lubricant melts during slip and then freezes again during stick, but now in a
more ordered configuration, e.g., like that shown in Fig. 30 (middle panel), which corresponds to the point “β” of
Fig. 29 and is characterized by fs ∼ 0.02 ÷ 0.03. After several such cycles, the lubricant finally takes an ordered
five-layer configuration as shown in Fig. 30 (right panel), which corresponds to the final point “γ” of Fig. 29. After
that, the system exhibits the LoLS smooth-sliding regime, and freezes in an ordered five-layer configuration if the
driving decreases.

Onset of sliding. Figure 29 also demonstrates possible mechanisms of the beginning of sliding. It is evident that
the threshold force fs and the system dynamics at the onset of sliding first of all depend on the starting configuration.
Namely, if the starting configuration contains a small concentration of defects that pin the substrates (such as shown in
Fig. 30, middle panel) so that fs only slightly exceeds the kinetic frictional force, then the interstitial defective atoms
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Figure 28: Distribution of the energy losses across the soft lubricant for the Nl = 5 system with flat geometry. The
lower curve is for the LoLS regime (f = 0.008), and the upper curve, for the LS regime (f = 0.011). The numbers -1
and 7 correspond to the rigid substrate layers, the numbers 0 and 6 correspond to the mobile substrate layers, and
the numbers 1 to 5 correspond to the lubricant layers.

are pulled back into the lubricant layers, the lubricant film is ordered, and the sliding begins with the layer-over-layer
regime. On the other hand, when the starting configuration is far from the ordered sliding configuration (e.g., as the
annealed configuration like that shown in Fig. 30, left panel), then at the onset of sliding the lubricant has to be
reordered by plastic deformation/flow, its effective temperature grows above the melting one, and the lubricant film
melts almost immediately with the beginning of sliding.

Role of the load. The sliding mechanisms described above remain qualitatively the same for other values of the
loading force. A change of fload only shifts the threshold force fs, the force intervals for the LoLS and LS regimes
and the critical velocity vc. The dependences of these parameters on fload are approximately linear. For example, for
the Nl = 5 system with the help of the spring algorithm we obtained for the kinetic frictional force the dependence
fk ≈ fk0 + αkfload with fk0 ≈ 0.0022 and αk ≈ 0.05 for the LoLS regime at vs = 0.1. For the LS regime at vs = 0.3
we again found a linear dependence, but now with the parameters fk0 ≈ 0.0029 and αk ≈ 0.097. Emphasize that in
both sliding regimes the coefficients αk are much smaller than that for the static frictional force, where αs ∼ 0.5. It
is interesting also that the parameter fk0 is positive. For example, for the LoLS regime one should apply a negative
load (fload ≈ 0.044; recall that positive fz moves the top substrate upward) to break the interatomic forces within the
lubricant and to pull the surfaces away one from another to obtain the zero friction.

Role of the substrate temperature. For the soft lubricant, the mobility increases with T , i.e., the kinetic friction
decreases when the substrate temperature increases. However, in the LS regime, when the lubricant is melted due
to driving, the substrate temperature has almost no effect provided T is not too close to Tm. If T < Tm, then the
system is still locked at low forces, i.e., the system exhibits the stick-slip behavior at low spring velocities, although
the threshold values of the force fs and the velocity vc decrease when T increases. At temperatures close to or higher
than Tm, on the other hand, there are no sharp transition between the stick-slip and smooth-sliding regimes: instead
of the stick-slip behavior one observes a creep motion at low driving velocities in this case. When T is larger than Tm,
then the velocity is nonzero at any f > 0.

Finally, note that a thinner lubricant is characterized by a higher kinetic friction as summarized in Fig. 31.

5.3.2 A thin lubricant film (Nl ≤ 2)

The system behavior changes qualitatively for very thin lubricant films, Nl ≤ 2, when all lubricant atoms directly
interact with the substrates.

In the case of two-layer lubricant film, Nl = 2, both its layers are glued to the corresponding substrates in the
immobile state, and the film structure is crystalline. As a result, the static frictional force is high, fs ∼ 0.06, and does
not change essentially with the time of stationary contact. Because of so large value of the static frictional force, the
lubricant always melts at the beginning of sliding, so that the LS regime exists only. The hysteresis of the vtop(f)
dependence, as well as the mechanism of the stick-slip motion, always corresponds to the melting–freezing one. Due
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Figure 29: Sliding-induced self-ordering of the soft lubricant: Evolution of the flat Nl = 5 system at vs = 0.1.

Figure 30: Self-ordering of the flat Nl = 5 system during its sliding with the velocity vs = 0.1 as shown in Fig. 29:
the configurations “α” (left panel), “β” (middle panel), and “γ” (right panel).

to the large value of fs, the threshold velocity of the transition to the smooth sliding regime, vc ∼ 0.6, is also much
higher than for a thicker lubricant film.

The kinetic frictional force again only slowly depends on the driving velocity, e.g., fk changes from 0.016 to 0.03 for
the velocities vtop = 0.6÷ 5, and again it is much lower than the static frictional force. All this is reasonable, because
the lubricant is melted during sliding. As an example, Fig. 32 demonstrates the configurations of the system with the
curved top substrate. The annealed configuration in this case corresponds to two lubricant layers in the narrow region
and three layers in the wide region; the same configuration is observed during stick at velocities vs < vc (Fig. 32, left
panel). The static frictional force, fs ∼ 0.06 ÷ 0.08, is determined by the atoms which are confined in the narrow
region. At the onset of sliding, first the LoLS regime is observed: the bottom layer remains immobile (glued to the
bottom substrate), the top layer is glued to and moves together with the top substrate, and the middle layer which is
present in the wide region only, also moves with the top substrate. Then, due to growth of the velocity during the slip,
first the middle layer and soon the whole lubricant 3D melts (Fig. 32, middle panel), and the LS regime is achieved.
In the smooth sliding regime, vs > vc, the lubricant is always melted, but the steady-state configuration now depends
on the sliding velocity: at lower values of the velocity, vs >∼ vc, the lubricant still has two layers in the narrow region
and three layers in the wide region (Fig. 32, right panel), while at higher velocities it is completely 3D melted (Fig. 32,
middle panel).

For the one-layer lubricant film, Nl = 1, the static frictional force is the largest, fs >∼ 0.1. Contrary to the scenarios
described above for thicker films, the one-layer film does not melt during sliding (in the case of flat geometry). At
the onset of sliding in this case we first observe the motion of two domain walls which soon transform into a channel
of moving lubricant atoms, and then the transition to the “running” state of all lubricant atoms is observed. This
scenario is similar to that observed for a driven adsorbed layers [168]. The stick-slip motion is now due to inertia
mechanism similarly to the hard-lubricant system (see Sec. 5.4 below). The reason is that the melting temperature of
the very thin film is very high. Moreover, the kinetic frictional force essentially depends on the velocity, approximately
as fk ≈ 0.05 vtop (see Fig. 33, solid symbols). The threshold velocity for the transition to smooth sliding is now
vc <∼ 0.3, i.e. it is lower than that for the melting–freezing mechanism of the two-layer film (but still much higher than
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Figure 31: The kinetic frictional force versus the driving velocity for the flat (solid symbols and curves) and curved
(open symbols and dashed curves) geometry for different widths of the lubricant: Nl = 1 (stars), 2 (triangles), 3 (down
triangles) and 5 (diamonds).

Figure 32: Configurations of the curved Nl = 2 lubricant during stick-slip with vs = 0.1 in the stick (left panel) and
slip (middle panel) states. Right panel: the configuration in the smooth sliding regime with vspring = 1.

for thick films).
In the case of curved geometry, however, the Nl = 1 lubricant film does melt at the beginning of sliding. For the

constant-force algorithm, the kinetic friction slowly changes with the velocity, fk ≈ 0.02 vtop (Fig. 33, open symbols),
which is more close to what was observed for thicker lubricant films. Recall that the annealed T = 0 configuration
corresponds in this case to a crystalline structure with one layer in the narrow region and two layers in the wide
region as shown in Fig. 34 (left panel). The static friction is determined by pinning the substrates in the narrow
region, where the structure of the lubricant film is commensurate with both substrates. When the system begins
to move at f = fs, the lubricant 3D melts (see Fig. 34, middle panel), and its temperature increases up to T ∼ 1
which is much higher than the melting temperature. If the applied force varies in this LS regime, the velocity, the
lubricant temperature and its width change linearly with the force. If the force decreases, at f ≈ 0.067 the velocity
vtop, the lubricant temperature and its width jump-like decrease, and the lubricant structure changes to a well-layered
configuration where, however, the layers are 2D disordered (see Fig. 34, right panel). In this case the LoLS regime
operates. With the further decrease of the force, the velocity decreases approximately linearly with f until it reaches
a value vtop = vb ≈ 0.17 at f = fb ≈ 0.023. After that, the sliding stops, and the lubricant again takes almost
ideal configuration. Thus, the lubricant freezes in a more ordered state, and in next stick-slip events the film remains
ordered during sliding (the stick-slip is due to inertia mechanism).

Finally, a rather detailed MD simulation of kinetic friction for submonolayer lubricant films has been done by
He and Robbins [130, 131]. In these simulations the substrates were also rotated relatively each other to some angle
in order to study incommensurability effects. The main result of simulation is that the tribological kinetic friction
µk satisfies Amontons law (friction is proportional to load), it only weakly depends on the temperature and on the
strength of the substrate-lubricant interaction, and µk takes values of order 75÷85% of the static friction coefficient.
He and Robbins [130, 131] have observed that at low driving velocities (e.g., v < 1 m/s) the motion corresponds to a
creep motion, i.e., to the “atomic-scale stick-slip” which, clearly, may only weakly depend (due to “memory effects”)
on the driving velocity. Only some (few) atoms overcome the barriers of the substrate potential at the same time
moment, and these atoms move (“pop”) with high (atomic-scale) peak velocities. These observations may explain why
the kinetic frictional force is approximately equal to the static frictional force for submonolayer lubricants, as well as
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Figure 33: Velocity of the top substrate (a), lubricant temperature (b) and its width (c) as functions of the applied
dc force for the one-layer soft lubricant film. Solid symbols are for flat surfaces, and open symbols, for the curved
geometry. Dash lines in (a) correspond to linear fits described in the text.

Figure 34: Configurations of the Nl = 1 soft lubricant with the curved geometry. Left panel: configuration just prior
the sliding at f = fs − 0 ≈ 0.102. Middle panel: configuration during sliding at f = 0.07 when vtop ≈ 3.7. Right
panel: configuration during sliding at f = 0.06 when vtop ≈ 2.

why the experimentally measured kinetic friction often does not depend on the velocity.
The friction strongly depends on the commensurability between the substrate lattice constant and the mean distance

of the interaction in the lubricant. However, the friction coefficient is insensitive to the concentration of lubricant
atoms (for θ < 1), because increasing of the number of atoms spreads the load and the driving force over more atoms.
Also, it was found that µk logarithmically depends on the sliding velocity: the coefficient α in the Amontons law
depends on the driving velocity as α ≈ C ln v with C ≈ 1.1×10−3. Such a dependence may be explained as emerging
due to thermally activated atomic jumps.

5.4 A hard lubricant: The perfect sliding

The soft lubricant considered in the previous section belongs to conventional lubricants. Its main advantage is that
due to strong coupling with the surfaces, the lubricant is hardly to be squeezed out from the contact area. Besides,
due to sliding–induced melting of the lubricant film, it provides a relatively low kinetic friction.

The using of hard lubricants, which remain in a solid state at sliding, is also a very promising, especially in nano-
and microdevices. Well known examples include layered materials such as graphite, MoS2 and Ti3SiC2. The reason
of low frictional forces for solid lubricants is in incommensurability between two crystalline surfaces. In an ideal case,
when two 2D surfaces are incommensurate or at least not perfectly aligned, the static friction is zero, and the kinetic
friction is very low too. However, if the ideal crystalline structure of the lubricant is destroyed, i.e., due to sliding, it
may take an amorphous structure characterized by a quite high friction.

The hard–lubricant system with Vsl ≤ 0.4Vll was firstly studied by Thompson and Robbins [151]. It was shown
that for the film of width >∼ 10 molecular diameters at kBT = 1.1Vll (i.e., 30% above the bulk melting temperature),
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the lubricant slides over the substrates at slip, so that there is a jump ∆vx of velocity between the substrate and the
first lubricant layer; the jump ∆vx decreases when the ratio Vsl/Vll increases. The case of an amorphous lubricant has
also been studied by Thompson et al. [44]. The authors observed that when the lubricant (made of chain molecules)
is frozen in a glassy state, all the shear occurs at the interface. Below in this section we describe, following Ref. [157],
the simulation results obtained with the help of the model of Sec. 5.1 for the hard–lubricant system.

Rigid lubricant: the “universal” dependence. In the solid-sliding regime, when the top rigid substrate with one
attached s-layer moves as a whole with the velocity 〈vtop〉, the bottom rigid substrate with one attached s-layer does
not move at all, and the lubricant film moves as a whole with the velocity vl = 1

2 〈vtop〉, the washboard frequency is
equal to

ωwash = 2πvl/as = π〈vtop〉/as. (28)

The balance of forces for the top substrate takes the form F ≡ Nsf = Nalmlη
∗vl, where we introduced the total

viscous damping coefficient η∗ for an atom in the utmost lubricant layer. In the “perfect-sliding” approximation the
atoms in the utmost lubricant layers feel only the external damping ηext ≈ η1(zl) [ηph(ωwash) + ηeh] due to energy
exchange with the substrates. Assuming that η∗ = ηext, we obtain a “universal” (“perfect-sliding”) dependence

v
(uni)
top (f) =

2Ns
Nal

f

mlηext
. (29)

The dependence (29) depends neither on the number of lubricant layers nor on the substrate mass, because it describes
the steady state. It is shown in Fig. 35 together with simulation results for the hard lubricant. One can see that they
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Figure 35: The “perfect-sliding” dependence (29) and the T = 0 simulation results for the hard lubricant with the
ideal structure.

agree rather well at small (f < 10−3) as well as at high (f > 1) forces, when the washboard frequency lies outside
the lubricant phonon spectrum and, thus, the internal motions of the lubricant are not excited. The following two
conclusions follow from the dependence (29): (i) at small forces, fb <∼ f � ff , the effective friction is very small,
ηeff ∝ ω4

wash ∝ v4
top, and (ii) the maximal driving force and velocity are fmax < 7 and vmax < 11 (these values are

determined by the model parameter ωm). A further increase of f leads to unstable motion, because the pumped
energy cannot be taken out from the system.

The simulation results for the lubricant with the ideal crystalline structure. The results of simulation for the hard
lubricant with the ideal crystalline structure are presented in Figs. 35 and 36. These results can be summarized as
follows:

• At vtop ∼ 1, when the washboard frequency is within the phonon zone of the lubricant, the vtop(f) dependence
exhibits a plateau due to excitation of phonons within the lubricant. These resonances can in principle be
described analytically [157]. Unfortunately, this approach is not too useful, because it uses a number of poorly
defined fitting parameters.
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• The dependence vtop(f) exhibits hysteresis as shown in Fig. 36. The sliding starts when the driving force exceeds
the static friction fs. Then, if the force f decreases down below the backward threshold f = fb � fs, the velocity
drops from a finite value v = vb ∼ 0.03÷ 0.1 to zero, and the system comes back to the crystalline configuration.
The minimal values fb and vb are discussed below in Sec. 6.1.

• The lubricant is heated due to driving. The distributions of velocities for all forces can be approximated by
Gaussian curves if we use different “temperatures” for the lubricant and the s-atomic substrate layers as well
as for different degrees of freedom. Therefore, the effective lubricant temperature can be introduced as Tα =
m〈(vα − 〈vα〉)2〉, where 〈. . .〉 designates the averaging over time and, e.g., over all atoms in a given layer. The
simulations [157] show that (i) the lubricant temperature increases with f until it finally melts at some f = ff ,
and (ii) Tz � Tx >∼ Ty so that the driven system is strongly out of equilibrium. At low forces or velocities
the temperature is not uniformly distributed over the lubricant film; the boundary layers which are in moving
contact with the substrates have a higher temperature than those in a middle of the lubricant. But at large forces,
f ∼ 0.02÷ 0.2 when vtop ∼ 1÷ 4, the lubricant temperature is approximately uniform across the lubricant. This
indicates that anharmonicity effects, which are responsible for energy exchange between different layers within
the lubricant, become large enough at high driving.

• The energy losses are mainly at the sliding interfaces. The simulations [157] show that the energy is lost mainly
due to the motion of atoms along the direction x of the driving. The energy is lost mainly within the rigid
substrates and in the utmost lubricant layers (i.e., in the layers which are in moving contact with the substrates)
as has to be expected.

The simulation results obtained with the help of the algorithm with the attached spring are presented in Fig. 37
for the Nl = 3 system, which demonstrates a typical behavior. The sequence of the transitions with the increasing
of the driving velocity is the following: stick-slip at low velocities → irregular (chaotic) motion at an intermediate
velocity → smooth sliding corresponded to perfect-sliding regime at high velocities. In the stick-slip regime, the
lubricant “temperature” increases during slips but remains much lower than the melting temperature, Tlub � 0.1.
The lubricant width also increases just at the onset of sliding, but the variation is very small, less than 1%. The
critical velocity of the transition from stick-slip to smooth sliding is vc ∼ vb, e.g., vc >∼ 0.03 for the Nl = 3 system; it



5 KINETIC FRICTION 41

-0.1

0.0

0.1

0.2

-0.004

-0.002

0.000

0.002

0.004

0.006

0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

2.5

0.4 0.6 0.8 1.0 1.2 1.4 1.0 1.2 1.4 1.6 1.8 2.0
v x

v=0.01

f

v=0.03 v=0.1

1
0
4

 T
z

10
-4

 time 10
-4

 time 10
-4

 time

Figure 37: System dynamics of the Nl = 3 crystalline lubricant between flat substrates obtained with the attached
spring algorithm (the elastic constant of the spring is kspring = 3 × 10−4) for three values of the driving velocity:
v = 0.01 (left column), v = 0.03 (middle column) and v = 0.1 (right column). The top row shows the spring force, the
middle row, the velocity of the top substrate, and the bottom row, the lubricant temperature.

is larger for Nl = 1 (vc ∼ 0.1) and smaller for Nl = 5 (vc ∼ 0.03). During smooth sliding the kinetic frictional force
is extremely small, f ∼ 10−4 to 10−3, and strongly increases with the driving velocity (so that the second Amontons
law does not operate for the perfect sliding). Also, the static frictional force in the stick-slip regime does not depend
on the driving velocity, i.e., we do not observe any “aging” of the lubricant film.

Amorphous lubricant. As was described in Sec. 5.2, if the temperature increases above Tm and then decreases
back to zero for the hard–lubricant system, the lubricant film freezes in a metastable state and takes a configuration
with defects and/or dislocations, which we will call “amorphous”. The static frictional force is not uniquely defined
in the case of “amorphous” lubricant, because fs depends on a given metastable configuration. The same is true for
the dependence vtop(f). A typical example is shown in Fig. 38 for the Nl = 5 system. In the solid–sliding regime
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Figure 38: vtop versus f for the Nl = 5 flat “amorphous” system at different temperatures as shown in the legend.

the lubricant film slides as a whole. The sliding may be asymmetric, especially at low driving — the lubricant film
may stick to either the bottom or the top substrate, so that the sliding takes place at a single lubricant/substrate
interface. The lubricant is heated due to sliding (now Tx ≈ Ty ≈ Tz), but its temperature remains below Tm, so that
the lubricant keeps the configuration with defects. The mobility of the frozen lubricant is much smaller than that of
the ideal hard lubricant film for the same interval of the forces. However, during sliding the lubricant may reorder as
will be described in Sec. 5.5; that results in the increase of vtop.

Using the algorithm with the attached spring for the “amorphous” lubricant, we again see the typical scenario of
the transition from stick-slip to smooth sliding. But because fs is much larger in this case than for the lubricant with
the ideal structure, vc is also larger, e.g., for the flat geometry we obtained vc >∼ 0.5 for Nl = 2 and vc <∼ 0.3 for Nl = 3
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and 5. The typical dependences are shown in Fig. 39 for Nl = 2 (top row) and Nl = 5 (bottom row).
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Figure 39: The frictional force versus time obtained with the spring algorithm for three values of the driving velocity
(as indicated in the legend) for the Nl = 2 (top row) and Nl = 5 (bottom row) flat “amorphous” system.

Role of temperature. The vtop(f) dependences at different temperatures of the substrate are shown in Fig. 38.
When the driving force is below the static frictional one, f < fs, so that the velocity is zero in the T = 0 case, in the
T > 0 case the velocity increases with T due to thermally activated (creep) motion. However, if the system is in the
perfect solid–sliding regime, then vtop decreases with T increasing up to the temperature when the film melts. With
further increase of T , when the lubricant is in the molten state, vtop increases, but it remains lower than that for the
T = 0 perfect–sliding steady state. If then the temperature decreases to zero, the lubricant freezes in a metastable
configuration. From Fig. 38 one can see that the mobility of the frozen lubricant is much lower than that of the
perfect solid lubricant. Again, however, the velocity decreases when T increases until the lubricant melts; after that
vtop grows with T . However, if, after the melting, T decreases back to smaller values but the dc force keeps a nonzero
value (f > 0) so that the system remains in the steady sliding state, then the lubricant film freezes in the layered
“amorphous” state being sliding as a whole. In this case vtop decreases to smaller values than it had before the melting,
and vtop decreases with T decreasing, i.e., now the behavior is just opposite to that observed for the perfect–sliding
regime. The combined dependences vtop(T ) at different dc forces for the Nl = 5 system are presented in Fig. 40. Note
that the kinetic frictional force demonstrates a peculiarity (which is very strong at low driving) at melting and freezing
points, as is typical for phase transitions — close to and at the transition point all kinetic processes slow down.

10
-3

10
-2

10
-1

10
0

f=3 10
-4

f=1 10
-3

f=3 10
-3

f=1 10
-2

freezingmelting

T decreasesT increases

0.0     0.1     0.2     0.3     0.4     0.5    0.5     0.4     0.3     0.2     0.1     0.0

 v
to
p

T

Figure 40: The velocity of the top substrate vtop as a function of the substrate temperature T for the flat Nl = 5
system for four different values of the dc force. Left part (solid symbols) shows the dependences when T increases
starting from the perfect–sliding regime until the lubricant melts, while the right part (open symbols) corresponds to
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5.5 Self-ordering of the lubricant film

The use of solid lubricants may be a very promising way, especially in micro-devices. As was shown above, if the
lubricant film has a crystalline structure and is confined between two substrates which are atomically flat, the friction
coefficient in such perfect-sliding system may be as low as µ ∼ 10−3 ÷ 10−2 or even lower. The critical velocity of the
transition from stick-slip to smooth sliding is also quite small, vc ∼ 10−2c. Unfortunately, such an ideal system can
hardly be realized experimentally. Even specially prepared surfaces are not perfectly smooth on a mesoscopic scale,
and a lubricant has typically numerous structural defects. As a result, the static frictional force fs is large enough, and
the solid lubricant will melt at the onset of sliding. Then, at stick, the film solidifies back, but again into a state with
many defects, because the cooling of the confined film is very rapid due to a good thermal contact with the substrates.
In such a system one finds µ > 0.1 and vc ∼ 0.1 c, i.e., the tribological characteristics are of the same order as (or even
more worse than) those of liquid lubricants.

In Ref. [170] it was discussed whether the system itself can approach the desired perfect-sliding regime for a suitable
choice of the solid lubricant. Indeed, the effective lubricant temperature Tl increases during sliding. It is this increase
of the temperature that leads to melting of the lubricant in the melting–freezing mechanism of stick-slip. However, if
Tl remains lower than the melting temperature Tm, the lubricant film could remain solid and, at the same time, its
structure can become more ordered due to annealing of structural defects, especially if Tl is close to Tm. As was shown
in Sec. 5.2, the melting temperature of the lubricant film is proportional to the interaction amplitude Vll. Therefore,
for an appropriate choice of Vll one can find a situation where Tl <∼ Tm, i.e., where the sliding-induced heating brings
the system close to but lower than the melting temperature. In this case the lubricant will remain solid during sliding,
but its structure may reorder due to the annealing of the defects, and the system can approach the ideal case of perfect
sliding.

Simulations [170] show that this indeed is the case. We have given already an example of self-ordering of the soft
lubricant (Sec. 5.3, Fig. 29). Another example is shown in Fig. 41 for the case of Vll = 0.5 with the driving velocity
vs = 0.1: the system is in the stick-slip regime at the beginning, but the solid lubricant is heated and reordered during
slips, the structural defects (such as vacancies, interstitials, grain boundaries, etc.) are annealed, and the regime
changes to the smooth-sliding one. The configurations before reordering and after it are shown in Figs. 42a and 42b
respectively. In the former configuration, the lowest lubricant layer is highly commensurate with the substrate, so that
the sliding begins at the middle of the lubricant by removing the structural defects. On the contrary, in the latter
configuration, the lubricant is more ordered and its lowest layer is incommensurate with the substrate, thus the sliding
easily occurs at this interface.
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Figure 41: Reordering of the lubricant: spring force, velocity of the top substrate, lubricant width, and effective
lubricant temperature as functions of time at vs = 0.1 for the Vll = 0.5 system. Configurations before reordering (at
stick in the stick-slip regime) and after it (at smooth sliding) are shown in Fig. 42.

The friction force for different values of the interaction amplitude Vll is presented in Fig. 43. Note that the system
itself chooses a configuration during annealing and sliding, therefore the values fs and fk are not unique but may
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Figure 42: The panels (a) and (b) show the configuration before and after reordering, correspondingly (at the beginning
and at the end of the dependence shown in Fig. 41) for the system with Vll = 0.5 driven with the velocity vs = 0.1.
Each panel has side and bottom views, in the latter there is only one layer of substrate shown, and the atomic radii are
adjusted in order to visualize clearly the commensurability between the lubricant and the substrate (figures produced
with Visual Molecular Dynamics software [169]).

change from run to run. This is indicated by “error bars” in Fig. 43, which just show a scatter of the corresponding
values in different simulation runs. One can observe two clear-cut features of the behavior of the frictional force.
First, the mechanism of the stick-slip motion changes from the melting–freezing to the inertia mechanism at Vll >∼ 0.5,
i.e., for Vll/Vsl >∼ 1.5. Most importantly, one can observe that for Vll ≈ 0.8 the kinetic frictional force fk achieves a
minimum as low as fk ≈ 10−4 ÷ 10−3. The friction coefficient in this case takes values of order µ <∼ 10−2 which are
more than one order of magnitude lower than those attainable with conventional liquid lubricants.

Thus, there exists an optimal choice of the strength of interatomic interaction Vll within the lubricant that leads
to the minimization of the kinetic friction as well as to the low critical velocity of the stick-slip to smooth-sliding
transition. The optimal value of Vll should be high enough (relatively to the amplitude Vsl of the interaction of
lubricant atoms with the substrates) so that the lubricant remains in a solid state during sliding. At the same time,
the value of Vll should not be too high, in order to allow annealing of the structural defects in the lubricant. For the
parameters used in Fig. 43, the optimum is achieved at Vll ≈ 2.5Vsl.

From a thermodynamic point of view, self-ordering of the lubricant system should be a general phenomenon.
Indeed, a “free energy” of the driven system is ∝ E + fkvst. The ordering of the lubricant film lowers both the
potential energy E and the frictional force fk, thus decreasing the free energy.

The ordering of the lubricant film may be even more important for lubricants made of complex molecules such as,
e.g., linear alkanes (n-hexadecane and n-dodecane) or branched alkanes (e.g., squalene). For example, the ordering
of a six-layer n-dodecane lubricant film between mica walls was recently observed in large-scale MD simulation [171].
In the ordered state, the effective viscosity was even lower (in 2 ÷ 8 times) than the dodecane bulk viscosity. In this
system, however, the lubricant film was not solidified, but a “layer-over-layer” sliding was observed instead. These
simulation results are in agreement with the experimental data [172, 173].

5.6 A phenomenological approach

A general analytical theory of friction can hardly be developed because of too complicated character of the processes
involved. However, in what follows we present some attempts to explain qualitatively the values of the static and
kinetic frictional forces observed in the simulations.

Static frictional force. For a submonolayer lubricant film, θ < 1, an explanation of the Amontons law for the static
friction

fs = fs0 + αsfload (30)

on the microscopic scale was proposed by Müser et al. [128, 129]. In this case the lubricant atoms can accommodate
the surface corrugation of both walls simultaneously, if they occupy the “++” positions, where the lubricant atoms lie
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Figure 43: Static fs and kinetic fk frictional forces for three values of the driving velocity (vs = 0.1, 0.3 and 1 as
indicated in legend) as functions of the interaction amplitude Vll in semi-logarithmic scale. The “error bars” show
deviation of the simulation results in different runs.

at the minima of potentials from both surfaces. This locks the two surfaces together. Thus, these atoms work like one-
atomic “asperities”; then the Amontons law simply follows from the relation (fload ∼ −∂Vsl/∂z) ∼ (fs ∼ −∂Vsl/∂x) .

Similar arguments can be used to explain the simulation results for a closely packed lubricant films obtained with
the help of the model of Sec. 5.1. Figure 44 shows that the Amontons law operates for the soft lubricant. The static
frictional force is relatively large, fs0 ≈ 0.09 for Nl = 1 and fs0 ∼ 0.025÷ 0.035 for Nl ≥ 2. For a thicker lubricant the
two utmost lubricant layers are glued to the corresponding substrates, and sliding should occur somewhere in between
of the pinned layers. This explains why fs0 is approximately independent on the number of layers for Nl > 2. The
simulation results can be approximated by the Amontons law (30) with fs0 ≈ 0.035 and αs ≈ 0.6. Using the simplest
model of the rigid square lattice constructed of lubricant atoms with the lattice constant rll = 4.14 and one lubricant
atom on the top of this lattice interacting with the latter by the LJ potential of the amplitude Vll = 1/9, we obtain that
the threshold force (the driving force that allows the atom to overcome the activation barrier) depends on the loading
force as fx ≈ fx0 + α0fz with fx0 ≈ 0.13 and α0 ≈ 0.5 (a crude estimation may be obtained as follows: the energy at
the hollow site is E0 ∼ −4/9, the energy at the bridge site is Eb ∼ −2/9, so the barrier is ∆E = Eb − E0 ∼ 2/9 and
the distance is ∆a = 4.14/2, this gives fx0 ≈ ∆E/∆a ≈ 0.1). If we suppose that there are nd “pinning centers” which
accumulate all the stress in a given metastable configuration and prevent the system from sliding, the couplings due
to these defects have to be broken at the beginning of sliding. Therefore, we have fznd = floadNs and fxnd = fsNs,
that leads to the Amontons law with fs0 = fx0nd/Ns and αs = α0. Comparing with the simulation results of Fig. 44,
we obtain a reasonable agreement for the Nl ≥ 3 film, if we put nd/Ns ∼ 0.26, i.e. if there are about 40% “pinning”
(commensurate) atoms at an interface between the lubricant layers.

In the case of the hard “amorphous” lubricant, the simulation with the model of Sec. 5.1 leads to the static frictional
force fs ∼ 0.1÷0.15, and it again follows the Amontons law (30) with αs >∼ 0.3 (for Nl = 1÷3). These values can also
be explained with the help of the simple one-atomic model as described above, which gives fs0 = 0.39 and α0 = 0.32.
Therefore, the value of the static frictional force indicates that there 40÷60% pinning atoms at the lubricant/substrate
interface. Thus, we see that in all these cases the static frictional force is determined by the number of “pinning”
atoms in a particular stick configuration.

However, for the ideal crystalline structure of the lubricant, the simulation results are different as shown Fig. 45.
The dependence of fs on the load fload can be fitted by the Amontons law (30), but the values of αs are much smaller:
αs ≈ 0.14 for Nl = 1, and it is very small for Nl = 2 and 3, where we get αs ∼ 3·10−3. The exponential decrease of
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Figure 44: The static frictional force fs versus the loading force fload for different widths of the soft lubricant film:
Nl = 1 (open diamonds), 2 (open triangles), 3 (solid down triangles), and 5 (open circles) in the case of flat geometry.
Solid lines correspond to fits by the Amontons law (30) with the parameters given in legend.

the static force fs with Nl can be explained be the arguments described above in Sec. 4.

Kinetic frictional force. The kinetic friction emerges due to energy losses during motion of lubricant atoms with
respect to the substrates. The kinetic energy associated with this motion is transferred into the substrates (through
excitation of substrate phonons) and finally is dissipated in the substrates being transformed into heat. Therefore,
the most natural way of calculation of the kinetic friction is through energy balance arguments. Namely, the energy
dEin/dt = Fvtop = Nsfvtop pumped into the system per one time unit due to the external driving, must be equal
to the energy dEdiss/dt dissipated in the substrates. The only way of energy dissipation in the model of Sec. 5.1 is
through the viscous damping term mlvη(z, v) in the motion equations. This damping depends on the distance z from
the corresponding substrate and on the relative velocity v according to the expression η(z, v) = η1(z) η2(v), where the
first factor η1(z) describes the exponential decrease of the damping when an atom moves away from the substrate, and
the second factor η2(v) describes the velocity-dependent excitation of phonons in the substrate given by Eqs. (11,12)
of Sec. 3.

When the lubricant has an effective temperature Tl, then its atoms move with a thermal velocity 〈vth〉 =
(kBTl/ml)1/2 ∼ 0.3 ÷ 0.7 at temperatures Tl ∼ 0.1 ÷ 0.5. Thus, if a lubricant atom is near a substrate at a dis-
tance zl from the nearest surface and moves with an average velocity vl with respect to it, then it losses per unit of
time the energy

ε(vl;Tl) = mlη1(zl)
∫
dv η2(v) v2 P (v − vl;Tl), (31)

where P (v;T ) = (ml/2πkBT )1/2 exp(−mlv
2/2kBT ) is the Maxwell distribution.

Let N ′al be the number of atoms in the lubricant layer just adjusted to the surface of the substrate, and vlx be the
average x-velocity of atoms in this layer relative the substrate, while vly = vlz = 0 for the motion along y and z. Now
we can estimate the total energy losses as dEdiss/dt ≈ sN ′al [ε(vlx;Tl) + 2ε(0;Tl)− 3ε(0;Tsub)], where we subtracted
the energy dissipated due to thermostat (the factor s = 2 for the case of symmetric sliding describes the fact that
there are two sliding interfaces). From the equality dEin/dt = dEdiss/dt we finally obtain

fk ≈ mlGη1(zl)F(vtop), (32)

where G ≡ sN ′al/Ns and η1(zl) are “geometrical” factors which weakly depend on the velocity and temperature
through a change of the lubricant structure during sliding, while the last factor is the main one that determines the
dependence of the kinetic friction on the driving velocity and the temperature,

F(vtop) = v−1
top

∫ ∞
−∞

dv η2(v) v2 [P (v − vlx;Tl) + 2P (v;Tl)− 3P (v;Tsub)] . (33)

The factor F grows with the driving velocity as well as with the temperature. For example, if we take into account
only the minimal contribution ηeh in Eq. (27), then the factor F becomes equal to

Fmin(vtop) = ηeh

[
v2
lx + (3kB/ml)(Tl − Tsub)

]
/vtop, (34)
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Figure 45: fs0 as a function of the number of layers Nl for the flat geometry of the hard lubricant with the ideal
crystalline structure. Inset: The static frictional force fs versus fload and the corresponding linear fits (the fitting
parameters are given in the legend).

which grows linearly with the velocity (at Tl = Tsub) as well as with the lubricant temperature (for fixed vtop and
Tsub).

Next, we must take into account that the lubricant temperature grows with the driving velocity, e.g., Tl = Tsub +
Tv(v), where Tv(v) is the heating due to driving. Simulations suggest that Tv(v) changes approximately linearly with
the velocity. However, in the limit vtop → 0 it should be Tv ∝ v2 (note that the same dependence operates for a body
embedded into a flowing liquid in classical hydrodynamics). In a general case the lubricant temperature can again
be found with the help of energy balance arguments. The energy pumped into the lubricant, R+, emerges due to
“shaking” of the lubricant during sliding by an oscillating force of an amplitude f0 ∼ fs and the washboard frequency.
The pumped energy should be equal to the dissipated energy R− ∝

∫
dv η(z, v) v2 [P (v, Tl)− P (v, Tsub)]. Such an

approach allows to find Tv analytically.
Then, we must take also into account the dependence of the geometrical factorsG and η1 in Eq. (32) on temperature.

First, the lubricant width grows with the lubricant temperature due to thermal expansion, d ≈ d0 +βz0Tl. As a result,
the distance of lubricant atoms from the nearest surface will grow with temperature, zl ≈ zl0 + βzlTl, which leads to
exponential decrease of η1. In the case of the liquid lubricant, when the lubricant structure is changed with driving
velocity and temperature, we have to take into account additionally that the number of atoms that interact with the
substrates, N ′al, decreases when the film width grows. This effect may compensate or even overcome the increase of
the kinetic friction with T due to the factor F . One can show that the decrease of the geometrical factor G in Eq. (32)
can be described by the dependence N ′al ∝ [1 + βN (Tl − Tm)]−2/3.

Finally, we have to know the velocity vlx of the lubricant atoms in the utmost lubricant layer relative the substrate.
It can easily be determined for the solid lubricant system: vlx = 1

2vtop for the symmetric sliding, vlx = vtop for the
asymmetric sliding, and vlx = 0 for the LoLS regime of the soft lubricant. In the liquid-lubricant case, when the
distribution vx(z) is approximately linear across the lubricant, we have vlx ≈ αlvtopzl/d, where αl <∼ 1 for the soft
lubricant and αl >∼ 1 for the hard lubricant.

The described approach easily leads to the universal dependence (29) for the ideal crystalline structure of the
lubricant. For the temperature dependence of friction in this case we can take from the simulation data for the five-
layer system zl0 ≈ 5.21, βzl ≈ 0.3 and f0 ≈ 0.2. The phenomenological dependences obtained with these parameters
are presented in Fig. 46. One can see that they are in a good agreement with the simulation data. In a general case
the phenomenological parameters introduced above, can be extracted from the simulation data or even estimated from
first principles.

Connection with the hydrodynamic viscosity. For the planar geometry used in the simulations presented above,
the frictional force per unit area is Fα/A = p δαz −

∑
β σ
′
αβδβz, where Greek letters are for Cartesian coordinates,

(α, β, . . .) = (x, y, z), A is the total area of the surfaces in contact, p is the pressure, and the shear tensor in the linear
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Figure 46: The phenomenological dependences for the perfect sliding of the Nl = 5 hard lubricant for f0 = 0.2. (a) The
dependence of the kinetic frictional force on the sliding velocity at Tsub = 0.1 (open diamonds) and Tsub = 0.4 (solid
circles). The symbols correspond to simulation data. (b) The dependence of the kinetic friction on the substrate
temperature for three sliding velocities vtop = 1, 0.3 and 0.1.

approximation for uncompressed liquid is determined by the viscosity coefficient η̃ through the relation

σ′αβ = η̃

(
∂vα
∂xβ

+
∂vβ
∂xα

)
.

The total kinetic frictional force in the hydrodynamic approach is F = −Aσ′xz = −A η̃ ∂vx/∂z ≈ −A η̃ vtop/d, where
d is the width of the lubricant film. In the model of Sec. 5.1 we have F = −fNs and A = a2

sNs which leads to

η̃ = fd/vtopa
2
s.

In the simulation we typically observed the values f ∼ 0.01 and vtop ∼ 1 for the soft-lubricant system. Taking
as = 3 for the lattice constant and d ∼ 30 for the five-layer lubricant film, we see that the simulations lead to the
“hydrodynamic” viscosity coefficient with values of the order of η̃ ∼ 0.03. Even for the one-layer lubricant film, where
typical simulation values are f ∼ 0.05 and d ∼ 10, we obtain η̃ ∼ 0.05. To compare, recall that typical bulk values
for the viscosity coefficient lie within the range η̃ ∼ 10−5 to 1 kg m−1sec−1 (e.g., η̃ =10−5 for air, 10−3 for water, and
1 kg m−1sec−1 for glycerine, respectively). In the dimensionless (“natural”) unit used in the simulation, these values
correspond to η̃ ∼ 6×10−4 to 60 n.u. Thus, the simulations lead to quite small values of the hydrodynamic viscosity
coefficients. This result seems to contradict the conventional opinion, but in fact it is in agreement with experiments.
For instance, the viscosity of water confined between two mica plates to films of thickness down to one-two molecular
layers is within a factor of 3 or so of the viscosity of bulk water (Raviv et al. [174]; Raviv and Klein [175]). The
experimental [173] and MD simulation [171] study of a thin dodecane lubricant film between mica walls also showed
that the effective viscosity of the confined film is of order of or even lower than the bulk viscosity. Also, we should
mention the results of Becker and Mugele [176], where dynamics of squeezing of a thin OMCTS film was studied,
and the authors came to the conclusion that mutual friction between adjacent lubricant layers is close to the bulk
viscosity. On the other hand, at experiment the “smooth” sliding is typically observed at velocities vtop ∼ 1 µm/sec,
or vtop ∼ 10−9 n.u. in the dimensionless units. Such values lead to the “hydrodynamic” viscosity coefficient η̃ ∼ 107,
i.e. to typical (but wrong) conclusion that the viscosity of the confined film is extremely high.

It is instructive to estimate also the dimensionless Reynolds number R for the lubricant film. The latter is defined as
R = ρvd/η̃, where ρ is the lubricant density. As is known, the values R� 1 indicate a turbulent motion (which should
correspond to the LS regime of the lubricant), while lower values of R correspond to the laminar flow (which would
correspond to the LoLS regime of the MD model). Taking ρ = NlNal/(Nsa2

sd), we obtain R = (Nal/Nsa2
s)(Nlvtop/η̃),

that gives the values R ∼ 1 to 10 (smaller values are for thinner films), so that the lubricant is somewhere in between
the laminar and turbulent regime, as indeed is observed in the simulation.

Finally, note that typical simulation values for the “tribological” friction coefficient µ ≡ f/fload are µ ∼ 0.1÷ 0.5
which are close to experimentally observed ones.
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6 Stick-slip and smooth sliding

Both experiments and simulations show that in all cases when the static frictional force is nonzero, fs > 0, the system
exhibits a transition from stick-slip at low driving velocities to smooth sliding at high velocities. In most cases, smooth
sliding is a more desired regime (one exception is bowing a violin), thus the problem emerges how to avoid or reduce
the stick-slip regime. However, to do this, first of all one has to understand the mechanisms of stick-slip motion and
the transition to smooth sliding. The phenomenological theory described in Sec. 2.3, unfortunately, remains purely
phenomenological in that the corresponding equations cannot be derived from a microscopic-scale simulation. On the
other hand, the stick-slip motion predicted in the simulations strongly disagrees with experiments in the values of the
critical velocity vc. In what follows we discuss this question.

6.1 Microscopic smooth sliding: A minimal velocity

As follows from simulation, hysteresis of the v(f) dependence and, therefore, the stick-slip motion may appear due to
two different mechanisms: the melting–freezing of the lubricant for the soft lubricant (Sec. 5.3), or inertial effects for the
hard (solid) lubricant as described in Sec. 5.4 (the latter mechanism is similar to the bistability of an underdamped
driven atom in the inclined periodic potential). In both cases, however, the velocity on decreasing of the force,
vb = v(fb), is of atomic-scale order , vb ∼ 1÷ 10 m/s. If the top block is driven with a velocity v through an attached
spring, we obtain smooth sliding for v > vc and stick-slip for v < vc. Always, however, vc ∼ vb is on the atomic-scale,
e.g. vc ∼ 10−2 c (c is the sound speed), which is more than six orders of magnitude higher than the experimentally
observed values.

In Sec. 2.4 we mentioned that the characteristic velocity of the transition depends on the mass of the moving
substrate, vm ∝ M−1/2. When the sliding block is considered as a rigid one, then M = NsN⊥m, where m is the
atomic mass, Ns is the number of atoms at the interface, and N⊥ is the number of atomic layers in the block. Therefore,
one may speculate that for a macroscopically large block, N⊥ → ∞, the velocity at the transition may be made as
small as desired, e.g., such as that observed experimentally. This picture, however, is wrong for a nonrigid substrate,
where only the first (closest to the interface) atomic layer stops at the transition, so that M = mNs, and vm is of
atomic-scale value. In what follows we show that for the case of a planar geometry of the sliding contact this is always
true, even if the sliding block has an infinite mass. Moreover, when the moving object has its own internal degrees of
freedom which can be excited due to sliding, then the transition is discontinuous, contrary to the continuous transition
for a single particle.

Of course, it is not possible to simulate a three-dimensional semi-infinite substrate. But a one-dimensional model
can be simulated with sufficient accuracy. Namely, let us consider the model shown in Fig. 47, where the top substrate
consists of N atoms (“layers”), the first layer moves in the external sinusoidal potential due to the bottom substrate,
and the dc force F is applied to the last layer of the top substrate, so that the equations of motion are

ẍ1 + ηẋ1 + η1(ẋ1 − ẋ2) + g(x1 − x2) + sinx1 = 0, (35)

ẍl + ηl(2ẋl − ẋl−1 − ẋl+1) + g(2xl − xl−1 − xl+1) = 0, l = 2, . . . , N − 1, (36)

ẍN + ηN (ẋN − ẋN−1) + g(xN − xN−1)− F = 0. (37)

To simulate the semi-infinite substrate, the damping ηl inside the moving block can be chosen to be zero at the
interface and to increase smoothly far away from the interface, e.g.,

ηl = ηm
hl − h1

hN − h1
, hl = tanh

(
l − Ld

∆L

)
, l = 1, . . . , N. (38)

In numerical results presented below it was chosen Ld = 0.6N , ∆L = N/7 and ηm = 10ωs (here ωs = 1). Thus, a
wave emerged at the interface due to sliding, will propagate inside the substrate and will be damped there.

The simulation results for this model are presented in Fig. 48. One can see that, when the force decreases down to
the value fb, the average velocity of the top substrate decreases reaching the value vb and then abruptly drops to zero.
The transition itself is shown in Fig. 49. The inset of Fig. 49 clearly demonstrates the wave emerged at the interface
at the stop moment which then propagates into the top substrate.

It is interesting that if one chooses ηl in Eqs. (35–37) to be a constant, then the wave emerged at the sliding
interface and propagated through the substrate, will be reflected from the top surface of the slab and go back, so that
a standing wave is excited, especially at small enough values of ηl. This standing wave prevents from the transition to
the locked state, so the sliding state will persist for much smaller values of the dc force. This resonance effect evidently
depends on the width of the top block — the narrower is the slab, the larger is vtop and the smooth sliding persists
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Figure 47: The 1D tribological model: the top substrate consists of N atoms (“layers”), the first layer moves in the
external sinusoidal potential due to the bottom substrate, and the dc force F is applied to the last layer of the top
substrate.

for smaller forces. Such a model describes the situation when the top block corresponds to a thin slab; the slab can
be glued to another large block so that a reflecting interface exists.

Besides that the 1D model allows the accurate simulation of a pseudo-infinite substrate, it also allows the exact
analytical solution. An idea is to use the linear response theory [177] and the Green function technique [178]. Namely,
when the top block moves with an average velocity 〈v〉, the atoms in the lowest layer of the top block oscillate with
the washboard frequency ω0 = (2π/a)〈v〉 (plus higher harmonics). The rate of energy losses (i.e., the energy absorbed
by the top block per one time unit) can be calculated as R = 1

2f
2
0ω0 Imα(ω0), where f0 is the amplitude of the

force oscillations which is determined by the periodic potential of the bottom substrate, and α(ω) is the generalized
susceptibility [177]. The susceptibility α(ω) can be expressed through the causal phonon Green function G(ω) [178]
as α(ω) = −G(ω)/m. Thus, the rate of energy losses can be presented as R = (πf2

0 /4m) ρ(ω0), where ρ(ω) is the
density of phonon modes in the top substrate, ρ(ω) = −(2/π)ω ImG(ω). The energy absorbed by the top substrate
during its motion for one period of the external potential is equal to E

(1)
loss = 2πR/ω0 = Ra/〈v〉. This leads to

the contribution Frad = E
(1)
loss/a to the frictional force. The total frictional force is then equal to F = Frad + Fη,

where Fη = mηa−1
∫ a

0
dx v(x) emerges due to the damping η. Thus, if one knows the phonon Green function for the

semi-infinite substrate, one can calculate the frictional force (other details can be found in Ref. [179]).
Applying this technique to the 1D model of Fig. 47, where the the exact expression for the Green function is known

[178], we obtain the results shown by solid curves in Fig. 48 which are in a good agreement with the simulation ones.
Moreover, we can apply the described analytical approach to a 3D model of the semi-infinite substrate, i.e., to the
problem which cannot be studied by MD methods. Using an approximate phonon spectrum of the semi-infinite crystal
[93], we obtain the dependences shown in Fig. 50 (note that in the 3D model we must take into account not only the
main harmonic of the washboard frequency, but the higher harmonics as well). The function F (v) has a minimum
at v = vb ∼ 0.01 ÷ 0.1 where F (vb) = Fb. The part of the F (v) dependence to the right of the minimum, v ≥ vb,
corresponds to the stable motion, while the solution in the v < vb interval is unstable. Therefore, when the velocity
decreases below vb, the system must jumplike be transformed to the locked state. Thus, if the dc force applied to
the upper layer of the top substrate decreases, then the transition from the sliding regime to the locked state takes
place at F = Fb when the average velocity of the top block is nonzero, vb > 0. The threshold values Fb and vb do
not depend on the total mass of the top block, although they depend on the elasticity of the block — a stiffer is the
substrate, the lower are both threshold values.

The results described above correspond to a tribological system with a planar geometry, when the area A of the
contact scales with a characteristic linear size R of the sliding block as A ∝ R2. But these conclusions cannot be
applied to STM-like devices, where a tip of a macroscopic size moves over a surface, while the real contact area consists
of only one or few atoms. In the latter case the total mass of the tip is important, and vc would depend on M as MD
simulation due to Luan and Robbins [180] predicts.
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Figure 48: The dependences v(F ) for the 1D top substrate with g = 10 for three values of the external damping
coefficient η = 0.03, 0.1 and 0.3. The approximate analytical results are shown by solid curves (the unstable branches,
by dashed curves), the dash-dotted lines describe the trivial contribution v = F/mη, and the simulation results, by
open diamonds and dotted curves.

6.2 Macroscopic smooth sliding: An earthquakelike model

The MD simulation, as described above, always leads to the critical velocity of the transition from stick-slip to smooth
sliding which is on the atomic-scale, e.g., vc ∼ 10−2 c, or vc ∼ 1÷ 10 m/s. This strongly contradicts to experimentally
observed values of order vc ∼ 1 µm/s, which is more than six orders of magnitude lower. As a typical example,
we mention the SFA study of the one-layer hexadecane (C16H34) film of the width d = 0.4 nm (determined by the
diameter of chain molecules) between two mica surfaces [181]. At the load P = 2.6×106 Pa this system shows the
friction coefficients µs = 0.5 and µk = 0.25, and the critical velocity of vc ≈ 0.4 µm/s.

Thus, the microscopic mechanism of the stick-slip to smooth sliding transition observed in MD simulations has
little in common with the experimentally observed macroscopic one. In what follows we describe, following Ref. [182],
an earthquakelike model, which demonstrates stick-slip behavior at low velocities and changes to “smooth” sliding at
high v. The “transition” takes place at vc ∼ a/τ , where a is the average distance between junctions and τ is an “aging”
time of a single junction. Reasonable values for these parameters (e.g., a ∼ 10−6 to 10−3 m and τ ∼ 1 to 103 s) lead
to experimentally observed values of vc. The model predicts that experimentally observed smooth sliding actually
corresponds to atomic-scale stick-slip motion of individual junctions, and that the “transition” itself is a smooth one
if one increases the resolution of the velocity increments.

The model is a 2D variant of the Burridge-Knopoff (BK) spring-block model of earthquakes [183] similar to that
studied by Olami, Feder, and Christensen (OFC) [184]. Let the two blocks touch one another at (point) junctions
which pin the relative position of the blocks (see Fig. 51). The junctions form an array {ri} randomly distributed in 2D
space, ri = ri0 + (ξi − 0.5) ∆r, where i = 1, . . . , N numerates the junctions, ri0 corresponds to a uniform distribution
(the triangular lattice), ξi is a standard random number, and the parameter ∆r describes the amplitude of randomness.
The junctions interact elastically via springs of strength kij . All junctions are connected through springs of strength k
with the fixed bottom block and coupled frictionally with the top block moving with a constant velocity v. The elastic
constants are k ∼ 〈kij〉 ∼ ρc2a, where ρ is the mass density of the block, c is the transverse sound velocity, and a = 〈rij〉
[31]. The potential energy V (r) of the elastic interaction between two defects separated by a distance r in a solid [185]
as well as on a crystal surface [186] follows the law V (r) ≈ kint/r

3, where kint is a parameter describing the elastic
properties of the block. Thus, kij are determined by the expressions kij = 3 kint/|rj−ri|5

[
5 (xj − xi)2/(rj − ri)2 − 1

]
.

In a scalar variant of the model, only the x component of the force is considered. Let ui(t) represent the shift of
the ith junction from its nonstressed position. The local force fi(t) associated with each junction is the sum of the
force from the bottom block, f (b)

i (t) = kui(t), where ui(t) = ui(t0) + v(t − t0) is due to frictional coupling with the
top block, and the elastic forces from other junctions, f (int)

i (t) = −∑j kij [uj(t)− ui(t)]. As the top stage moves, the
surface stress at any junction increases continuously. A single junction is pinned whilst fi(t) < fs(t). When the force
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Figure 49: The transition from the smooth sliding to the locked state: the average velocity of the top substrate versus
time at the force F = 0.24 for the 1D top substrate of N = 2048 atoms for g = 10 and η = 0.1. Inset: the velocities
of some selected layers of the top substrate.

on a given junction, i, reaches the critical value fi(t) = fs(t), this junction starts to slide. At this point, a rapid local
slip takes place, during which the local stress in the block drops to the value fb. The sliding takes a time t < 10−10 s
[8, 10, 157] and thus can be considered as an instantaneous one. The coordinate ui of the relaxing junction (instantly)

changes to the new position ui =
(
fb +

∑
j 6=i kijuj

)/(
k +

∑
j 6=i kij

)
. The slip of one junction redefines the forces

on its neighbors; this can result in further slips (an avalanche); the triggered “earthquake” will stop when there are no
junctions left with a force above the threshold. Then the junctions are pinned again, and the whole process repeats
itself. As the initial configuration we use random shifts of all junctions, ui(0) = ξi ∆xini.

Following the discovery of self-organized critical (SOC) behavior in a BK-type model [187], many studies of this
type were performed [188, 189, 190]. If we set ∆r = 0, the model reduces to the OFC model [184]. For periodic
boundary conditions (PBC) the steady state of the OFC model is always periodic [191, 192]. However, for open
boundary conditions (OBC), the model exhibits SOC behavior and the probability distribution P (s) of the number of
relaxations s in a single avalanche follows the power law P (s) ∝ s−χ with the exponent χ continuously varying with
kint (or v). In both cases the OFC model does not demonstrate a transition from stick-slip to smooth sliding.

The main new feature that must be incorporated into the model is the “age-function” idea of the phenomenological
models (see Sec. 2.3), i.e., we have to assume that the static frictional force depends continuously on the time of
stationary contact of a given junction. In Ref. [182] we used a simple exponential dependence (let t = 0 correspond to
the moment when the junction is pinned),

fsi(t) = fs + (fsm − fs) [1− exp(−t/τ)] . (39)

Notice that fsi(t) re-initializes every time the junction relaxes and, thus, it is different for different junctions.
A rather comprehensive study of the one-dimensional variant of the BK-type model for the parameters suitable

for the tribological system and with incorporation of the fs(t) dependence (39) has been done by Persson [31]. The
important result of his study is that this type of model can explain the logarithmic time dependence of relaxation
processes at nonzero temperatures: it emerges due to thermally-activated processes which occur near the sharp cutoff
at f = fs in the distribution of surface stresses. However, the resulting f(t) dependences do not reproduce the
experimental ones too well, and the reason lies in the one-dimensionality of the model.

Without loss of generality we can put k = 1, a = 1, τ = 1, and fs = 1. In the simulation results presented
below it was used fsm = 2fs which corresponds, e.g., to the squeezing of a two-layer lubricant film into a one-layer
configuration (see Sec. 5.4), fb = 0.1, ∆r = 0.3, ∆xini = 1, kint = 0.1 (recall 12 kint ∼ k), and N >∼ 103 (for real
systems N/A ∼ 102 to 105 cm−2 as was mentioned in Sec. 2), although the results remain qualitatively unchanged
when all these parameters are varied over a wide range [182].

The study of different versions of the model leads to the conclusion that in order to reproduce typical experimentally
observed f(t) dependences, the “minimal” model must (i) be two-dimensional, (ii) incorporate the fs(t) dependence



6 STICK-SLIP AND SMOOTH SLIDING 53

0.01 0.1 1

10
-2

10
-1

10
0

 ω
m
=10  η=0.1

 ω
m
=3  η=0.3

 ω
m
=3  η=0.1

 ω
m
=3  η=0.03

 

 

fo
rc
e

velocity

Figure 50: The dependence F (v) for the 3D model of the semi-infinite top substrate for different model parameters
as shown in the legend.

(39), and (iii) have a random spacial distribution of contacts, ∆r 6= 0. A typical dependence of the total frictional
force f(t) for different velocities v is shown in Fig. 52a.

At v >∼ 1, the model shows a “smooth” sliding and behaves similarly to the OFC model. The difference is that,
due to the randomness of the junctions’ distribution, ∆r 6= 0, the function f(t) shows a complicated, non-periodic
behavior even for PBC. The distribution of avalanche sizes is exponential, P (s) ∝ exp(−s/s̄), both for PBC and OBC
as shown in Fig. 53b (the power-law distribution is observed for ∆r = 0 with OBC only). The average size of the
avalanches can be estimated analytically [182]. For example, for the parameters used in Fig. 52 we have s̄ ≈ 4 for the
v = 3 case. The fluctuations of the total frictional force scale as 〈f(t)−〈f(t)〉〉 ∝ N−1/2 with the number of junctions.

When v <∼ 1, the model exhibits stick-slip behavior (see Fig. 52a). The distribution of avalanche sizes possesses
two peaks (Fig. 53a), the first at s = 0 with an exponential distribution as above, and the second at s ∼ N , i.e., now
an avalanche can occupy the whole system. Thus, at low velocities, when the time dependence of the static frictional
force is important, the slipping of junctions becomes synchronized. Such a behavior can also be explained analytically
[182].

Finally, the transition is smooth (see Fig. 52b), it is neither discontinuous (first-order) nor continuous (second-order)
contrary to predictions of the phenomenological models of Sec. 2.3.

Thus, the proposed version of the earthquakelike model, which combines features of the OFC model and the
phenomenological approach, resolves the disagreement between experimentally observed vc ∼ 1 µm/s and MD results
of vc ∼ 1 m/s. A single junction itself has to behave according to MD predictions, i.e., it should exhibit hysteresis
and atomic-scale stick-slip motion. The experimentally observed smooth sliding corresponds to atomic-scale stick-
slip motion of many junctions. This statement is in agreement with recent experimental results [193] (see Sec. 7).
The macroscopic-scale stick-slip behavior emerges because of concerted motion of the many junctions due to their
interaction, and the transition itself is smooth. This prediction should be checked experimentally: first, the fluctuations
of f in the “smooth” sliding regime should scale as N−1/2 ∝ 1/

√
A with the total area A of the contact, and second,

a careful analysis of f(t) should show a continuous spectrum for atomic-scale stick-slip, while for steady sliding the
spectrum should exhibit characteristic peaks at the washboard frequencies. However, some questions still remain
unclear as will be discussed below in Sec. 7.

Note that the described model with the exponential dependence (39) at v � 1 again reduces to the OFC model with
the threshold force fsm, and the stick-slip motion disappear. It is interesting that the inverse transition from smooth
sliding to stick-slip with v increasing was indeed observed in the SFA experiment [181] for the double-chained surfactant
DHDA+ [(C16H32)2−(C2H6N+)] between two mica surfaces. In this system the positively charged headgroups of the
DHDA+ molecules are strongly coupled to the negatively charged mica surfaces and form two monolayers, so that
the sliding should occur at the interface separating these monolayers. The authors of Ref. [181] observed the first
transition from the static state to smooth sliding at vc � 0.1 µm/s. Then, at v′c > 0.3 µm/s the smooth sliding was
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Figure 51: The earthquakelike model.

changed to stick-slip.
However, this is a special case emerging due to simple dependence (39), which achieves a plateau at t � τ . If

fs(t) continues to grow at t� 1, although may be slower and with another law, then the stick-slip regime survives at
low velocities. For example, if we take fs(t) = c1 + c2(t + c3)1/2, where the parameters c1,2,3 are adjusted to show a
behavior similar to the dependence (39) at short times, then we get stick-slip for any v � 1. Note also that at t� 1
the number of junctions has to decrease due to coalescence of nearest junctions, resulting in stick-slip motion too.

One should mention also several attempts to develop an analytical theory of macroscopic friction, for example, the
approach used by Caroli and Nozieres [194, 146] and the one due to Bocquet and Jensen [195].

The mechanism of stick-slip described above can be applied to the contact of two macroscopically flat surfaces as,
e.g., in micromachines or in SFA experiments. The slip distance in this case is ∝ (fs−fb)/kspring and takes mesoscopic
values, e.g., of order of microns (Gee et al. [18], Yoshizawa and Israelachvili [196]). However, the situation is different
in tip-based experiments, where the contact consists of a single or few atoms only. If the contact is formed by one
atom only, then the slip distance must be equal to the substrate lattice constant — the tip simply reproduces the
surface topography (in the underdamped case the slips may proceed over several lattice constants, but this regime
usually does not emerge in FFM experiments). When the contact is due to several atoms, the substrate potential
is averaged over these atoms, and the stick-slip may correspond to microslips by distances less than the substrate
periodicity (Thompson and Robbins [151], Baljon and Robbins [197]).

7 Conclusion

Let us summarize the main results obtained with the help of MD simulations.

1. First of all, modelling of the friction processes can be done and leads to many new interesting and important
results. Visualization of atomic trajectories helps to study such details of processes within the lubricant that
are not accessible by experimental methods. However, Langevin equations with the realistic damping ηext(z, v)
should be used in simulation.

2. The melting temperature of a thin lubricant film confined between two crystalline surfaces is higher than the
corresponding bulk value. Therefore, a very thin confined film is typically in a solid state. This results in a
nonzero static frictional force fs. The dynamics of the film is significantly affected by the substrate, both in the
solid and in the molten phases. The solid phase, able to sustain shear stress, shows large diffusional motions of
the atoms; the molten phase shows a layered structure.

3. Behavior of the lubricant is determined by the relationship between the interaction within the lubricant, Vll, and
the interaction of the lubricant atoms with the substrates, Vsl. In the case of the hard lubricant, Vll > Vsl, the
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Figure 52: (a) Total frictional force f(t) versus time for driving velocities v = 0.1, 0.3, 1, and 3. (b) Details of the
transition for velocities around vc: v = 0.42, 0.53, 0.75, and 1 (the parameters of the earthquakes model are the
following: N = 30× 34, fb = 0.1, fs = 1, fsm = 2, kint = 0.1, ∆r = 0.3, ∆xini = 1).

lubricant remains in the solid state during sliding, while in the opposite case of the soft lubricant, Vll � Vsl, the
lubricant film is melted at the beginning of sliding.

4. In both cases of the soft and hard lubricants, the function vtop(f) exhibits hysteresis. However, physical mecha-
nisms of the hysteresis are different for these two cases: in the case of the hard lubricant, Vll > Vsl, the hysteresis
is due to inertia mechanism, while for the soft lubricant, Vll � Vsl, it is due to the melting–freezing mechanism.
The hysteresis of the vtop(f) dependence leads to the inequality fk < fs. The latter, together with the condition
fs 6= 0, leads to the stick-slip motion at low driving velocities.

5. In the case of the soft lubricant of three or more layers wide, the simulations show that:

(a) The operation of the Amontons law fs = fs0 + αsfload for the static frictional force is determined by the
interatomic interaction within the lubricant, which leads to the coefficient αs ∼ 0.5. The value of the static
frictional force depends on a particular structure of the frozen metastable lubricant film. The value of fs
slowly grows with the time of stationary contact and reaches its maximum for the annealed configuration.

(b) During smooth sliding, the kinetic frictional force is approximately independent on the driving velocity.
However, the lubricant effective temperature (the heating of the lubricant due to sliding) as well as the
thickness of the film are proportional to the driving velocity. The Amontons law for the kinetic frictional
force, fk = fk0 +αkfload, operates as well, but with much lower proportionality coefficient, αk ∼ 0.05÷ 0.1.

6. The behavior of a thin soft lubricant film, Nl ≤ 2, when all lubricant atoms directly interact with the substrates,
differs from the case of thicker films. The static frictional force is relatively high and does not change essentially
with the time of stationary contact. The threshold velocity of the transition to the smooth sliding regime is
also much higher than that for thicker lubricant films. The one-layer film does not melt during sliding, and
the stick-slip motion is due to inertia mechanism similarly to the hard-lubricant system. The reason is that the
melting temperature of the very thin film is very high.

7. In the case of the hard lubricant, when the lubricant is crystalline without defects and is in contact with the
atomically smooth flat substrate surfaces, both static and kinetic frictional forces are very small. This is just the
ideal case of negligible friction predicted for the contact of two incommensurate solid surfaces. The static force
fs depends linearly on the load according to the Amontons law, but the proportionality coefficient αs is very
small. The static frictional force exponentially decreases with the film width. Also, it does not change with the
time of stationary contact. Due to so small values of fs, the threshold velocity of the transition from stick-slip
to smooth sliding is also rather small, vc ∼ 0.03 ÷ 0.1. The kinetic frictional force in the perfect-sliding regime
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Figure 53: The distribution of avalanche sizes P (s/N) at (a) v = 0.1 (solid curve) and 0.2 (dotted curve); (b) v = 3
(solid curve) and 5 (dotted curve). The inset in (b) is a log-linear plot showing the exponential dependence. All data
are for PBC with N = 60× 68, and the same parameters as in Fig. 52.

is very small too, fk ∼ 10−3 ÷ 10−4, and essentially depends on the driving velocity. The main losses are due to
excitation of vibrations in the lubricant with the washboard frequency.

8. Thus, the frictional force is mainly determined by the lubricant structure: the solid lubricant with a crystalline
structure leads to the lowest friction (the perfect sliding), the lubricant with an “amorphous” structure, to a high
friction, and the liquid lubricant leads to intermediate values of the friction (and fs = 0). The perfect-sliding
mechanism naturally explains the excellent lubrication of layered materials such as graphite, MoS2 and Ti3SiC2:
the sliding in these cases occurs between the solid layers rotated relatively to each other and, therefore, most
contacts are incommensurate. The perfect-sliding regime of the hard-lubricant system, however, can hardly be
realized experimentally. Even specially prepared surfaces are not perfectly smooth on a mesoscopic scale, and
the lubricant has typically numerous structural defects. As a result, the static frictional force fs is large, and
the solid lubricant is melted at the onset of sliding. Then, at stick, the film solidifies back, but again into a
state with many defects. However, the lubricant structure may self-order due to sliding, which results in almost
perfect sliding. There exists an optimal value of the strength of interatomic interaction Vll within the lubricant
that leads to the minimization of the kinetic friction. The optimal value of Vll should be high enough (relatively
to the amplitude Vsl of the interaction of lubricant atoms with the substrates) so that the lubricant remains in a
solid state during sliding. At the same time, the value of Vll should not be too high, in order to allow annealing
of the structural defects in the lubricant.

9. When the driving force decreases, the transition from the sliding regime to the locked state takes place at f = fb
when the average velocity of the top block is nonzero, vb > 0. The threshold values fb and vb do not depend
on the total mass of the sliding block, but depend on the elasticity of the block — a stiffer is the substrate, the
lower are both threshold values. The minimal velocity vb as well as the critical velocity of the transition from
stick-slip to smooth sliding vc are on the atomic-scale, vb ∼ vc ∼ 10−2 c, where c is the sound speed.

10. The experimentally observed values of vc ∼ 1 ÷ 10 µm/s of the transition from stick-slip to smooth sliding
can be explained with the help of the earthquakelike model. This model demonstrates stick-slip behavior at
low velocities which changes to “smooth” sliding at high v. The “transition” takes place at vc ∼ a/τ , where
a is the average distance between junctions and τ is an “aging” time of a single junction. The model predicts
that experimentally observed smooth sliding actually corresponds to atomic-scale stick-slip motion of individual
junctions, and that the “transition” itself is a smooth one.

However, there are still a large number of open questions in the problem of friction. In particular, we would like
to mention the following questions:

• What is the mechanism of fs(t) growing and how can one calculate the “aging” time τ? The macroscopic-scale
values of τ are determined, most probably, by plastic deformations, so that τ hardly can be calculated with the
help of MD technique. Possible mechanisms may be the following:
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– The most natural explanation of the growing of fs with the time of stationary contact is due to growing of
the real contact area because of thermally activated plasticity of the contacts. Experiment (Dietrich and
Kilgore [198]) and theory (Persson [199]) predict that the contact area should increase logarithmically with
the time of stationary contact, A(t)−A(0) ∝ ln(1 + t/τ).

– Persson et al. [31, 32]) discussed the process of relaxation of shear stress at the interface immediately after
the sliding stops, which also leads to growing of fs(t).

– If the lubricant is composed of long-chain polymer molecules, their interdiffusion may result in growing of
fs(t) as well.

– The value of fs may increase with time due to decreasing of the thickness of the lubricant film, e.g., because
of squeezing of the lubricant out from the contact area. The theory of squeezing developed by Persson and
Tosatti [202] and Persson [203], as well as MD simulation due to Persson and Ballone [158] show that this
process is characterized by a low rate too. Recently the squeezing of the OMCTS lubricant was studied
experimentally by the SFA technique [176].

– Even before a new contact is formed, a capillary bridge (a “necking”) may be formed by filling the space
between the surfaces with lubricant (or any other “third-body”) molecules. Because this is a thermally
activated process (Bocquet et al. [200], Riedo et al. [201]), it is characterized by a low rate and should
result in macroscopic-scale values of τ .

• The earthquakelike model (Sec. 6.2) used to explain the stick-slip to smooth sliding transition, is based on the
concept of “pinning contacts”. In the case of rough surfaces, they can naturally be associated with real contacts
or asperities. But some experiments demonstrate a similar behavior even for atomically smooth surfaces, where
one cannot expect any irregularities (however, see Ref. [172], where the question of “atomically smooth surfaces”
is critically discussed). Therefore, a question emerges, what is the nature of “pinning contacts” (called also
“stress domains” or “stress blocks”) in this case? In a series of papers [1, 2, 77, 78, 79] Persson conjectured
that the contacts appear due to nucleation of “solid islands” in the molten lubricant, so that the lubricant state
corresponds to a “granular 2D fluid” (see also Aranson et al. [50]).

• What is a scenario of the onset of sliding? Is it due to cracking of the lubricant or just due to its smooth plastic
deformation (e.g., in the case of the soft lubricant)? Is it due to emerging of moving islands or channels as
low-dimensional FK-type models predict, again because of plastic deformation of the lubricant? Or it is due to
dislocations created at the open boundary of the contact? For example, Sørensen et al. [141] in MD simulations
of “dry” friction of a Cu tip over the Cu(111) crystal surface observed tip motion via a dislocation mechanism:
dislocations were nucleated at the corner of the contact and then moved rapidly through the contact area.

• What is the noise spectrum during stick-slip and smooth sliding? Does it corresponds to discontinuous jumps,
to cascade or concerted jumps due to the elastic interaction between the contacts, or to separate peaks coupled
with washboard frequencies? A detailed experimental measuring of the noise spectrum may strongly help in
understanding of dynamical processes in the confined film.

In solution of these as well as many other problems an essential help could come from surface science physicists.
Indeed, the fact that properties of a thin adsorbed film are far from the corresponding bulk properties, is trivial
from the surface science point of view. Adsorbed films demonstrate a great variety of structures and phase transitions,
including commensurate-incommensurate transitions; as we showed above, the structure of the lubricant film plays the
key role in its frictional characteristics. Different mechanisms of surface diffusion could find their analogs in lubricant’
sliding, especially at the onset of motion. And experimental techniques of surface science should certainly be useful
(and are widely used already) in tribology.

Finally, we must note that in the present survey we strongly oversimplified the real problem of friction as it appears
in experiments as well as in machines. Most of simulation results described above, were obtained for a simple model
of the lubricant consisting of single atoms and interacting via the LJ potential. The reason is that this is a standard
approach in physics: In order to understand a complex phenomenon, one has first of all to start with a simplified
(“minimal”) model, and only after that, other more complicated details of the phenomenon can be incorporated.
Nevertheless, these simple simulations lead to correct qualitative and often even quantitative results, as compared
with more complicated simulations based on realistic potentials (as one of examples of large scale MD simulation of
real systems, we may mention, e.g., the study of diamond surfaces coated with amorphous carbon films by Gao et al.
[204, 205]). In the result of such approach, however, some important questions have been left out of our discussion.
In what follows we briefly mention some of them.
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As is well known, the coefficients of rolling friction are generally 102 to 103 times lower than those of sliding friction
for corresponding materials. The main source of friction in rolling is dissipation of energy involved in deformation of
the objects. In this context the following intriguing question emerges [206, 207, 208, 209]: may a similar mechanism
work at a microscopic scale, i.e., may a ball-shape molecules such as almost spherical C60 molecules (fullerenes) work
as a “molecular bearing”? It could be very promising for realization in nano- and micromachines. Unfortunately,
these anticipations have not been confirmed yet at experiments. The C60 molecules do may form close-packed layers,
e.g., on the graphite substrate [206, 207, 208, 209, 210, 211, 212, 213]. According to experimental results of Miura et
al. [215], two layers of C60 molecules are stick but one (close-packed) monolayer may exhibit rolling. However, the
lowest friction coefficient between two C60 films was found to be of order µ ∼ 0.15 [210, 211, 212, 213]. Simulations
indicate that the smooth rolling is destroyed at high concentrations of the lubricant because of the jamming effect
[214]. In the case of rolling friction the jamming is much more dramatic than in the case of sliding friction with
conventional lubricants. When two nearest neighboring rolling molecules come in close contact, they hinder mutual
rolling, because the two sides of colliding molecules roll in opposite directions. In the result both molecules stop to
roll. Then the jam grows in size and totally destroys the smooth rolling regime. Therefore, the microscopic rolling
with a very low friction could be expected in systems where (i) the substrates are more rigid than the lubricant, (ii)
the lubricant is incommensurate with the substrates, and (iii) the lubricant concentration is lower than some critical
value, e.g., lower than the close-packed C60 layer. Note that the increase of temperature or the introduction of an
additional repulsion between the lubricant molecules may strongly improve the frictional properties of fullerene-like
lubricants [216, 217, 218, 219, 179].

Kinetic friction and wear. Starting from Bowden and Tabor [3], a common opinion in macrotribology is that the
pinning of the surfaces is due to forming of cold-welded junctions, so that the sliding corresponds to shearing of these
junctions, which may be followed by ploughing the surface of the softer material by the asperities of the harder one. A
MD simulation of these effects is rather complicated and requires some special tricks (Müser [148]). The experiments
due to Budakian and Putterman [220] showed that when two macroscopic metal surfaces are brought into a direct
(dry) contact (the authors studied Au-Au and Au-Pt pairs), a nanometer size junction spontaneously forms over a
long time scale. The initial Angström-sized radius grows by a factor of 50 in ∼ 1 min. The parameters of junction
rupture match the observed dynamics of stick-slip friction, which suggests that stick-slip friction has its origins in the
formation and rupture of junctions that form between metal surfaces in contact. This process evidently should result
in a wear of the surfaces. However, MD simulations of “dry” friction of a Cu tip over the Cu(111) crystal surface due
to Sørensen et al. [141] have shown no wear for sliding velocities up to 5 m/s. This fact may be explained, if we recall
that (111) surfaces are the preferred slip planes in fcc metals. But when the tip-substrate structure corresponded to
contact of two commensurate (100) surfaces, wear did occur, so that the moving tip left a trail of atoms in its wake.
Of course, one of the most important roles of lubricants is to avoid or at least reduce the wear and surface damage.

A very important task is to control frictional properties in a desired way. Traditionally, such a control is achieved by
chemical means, supplementing base lubricants by so-called friction modifier additives. Recently a detailed microscopic
investigation of molecular mixtures was begun with the same accuracy as pure (one-component) lubricants. As an
example, we may mention the recent SFA rheological study of a complex system with well defined and controlled
friction modifier additives by Zhu et al. [223]. An example of theoretical study of mixed monolayers can be found
in Ref. [224]. An idea of the theoretical approach is to play with the concentration of additives and their interaction
with the bare lubricant molecules in order to achieve an incommensurate structure, thus lowering the static friction
and the stick-slip regime.

The role of chemical additives may be even more involved and active, when the extreme conditions at the contact
area (huge local pressure and high temperature) stimulate an irreversible chemical reaction, as was demonstrated
recently by Mosey et al. [225]. Using ab initio Car-Parrinello MD technique (a classical MD is not appropriate in this
case), the authors showed that at the pressure P ≥ 17 GPa the zinc phosphate additives (Zn[S2P(OR)2]2, where R
is an alkyl group) undergo a chemical transformation and form a cross-linked network of zinc phosphate chains. The
resulting film covers the asperities, protecting them from wearing and providing smooth sliding. These results also
explain why zinc phosphates are effective for protecting steel surfaces and not aluminium ones: the yield threshold of
steel is P ≈ 21 GPa, while it is only ≈ 7 GPa for Al alloys.

Another way to control and manipulate friction is by mechanical means, e.g., by applying small perturbations to
accessible elements of the system. The experimental SFA investigation by Heuberger et al. [226] showed that friction
in a lubricated junction at low driving velocity (∼ 10−7 m/s) can be strongly reduced by small amplitude (of order
<∼ 1 Å) normal oscillations of the sliding substrate with frequency ∼ 103 Hz. At low loads (< 5 mN) the friction
coefficient changed from µ = 0.48 (without oscillations) down to µ < 0.01; for higher loads the effect is smaller, but
still essential. The experimental investigation of the effect of tapping on friction between slider and disk in a hard-disk
drive with the help of the AFM technique at high sliding velocity (0.6 m/s) was also done by Su et al. [227]. It was
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found that the tapping can reduce friction, especially when the surface is smooth and the load is light. The observed
effect, however, was rather small, the friction may be reduced by a factor of two or less only. A strong reduction
of friction (in more than one order of magnitude) due to small amplitude normal oscillations was found in GCMD
simulation by Gao et al. [228] where, however, the sliding and oscillating velocities were of order >∼ 1 m/s as typical
for MD simulations. Different theoretical methods to control friction by mechanical methods, based on simplified
FK-like models, were also proposed by Rozman et al. [229], Zaloj et al. [64], and Braiman et al. [230]. In particular,
recently Tshiprut et al. [231] have demonstrated that lateral vibrations of a substrate with a frequency >∼ 105 Hz and
amplitude of the order of lattice constant can dramatically reduce the friction due to abrupt dilatancy transition (the
increase of the separation between sliding surfaces).

Throughout this review paper we had in mind mainly the problem of minimization of friction coefficients. But,
as we have mentioned already in the Introduction, the question how to maximize the friction, is also very important
in some situations. This question is especially important for the friction between the road and the tyres, and it is
typically connected with the rubber friction. However, the mechanisms of the rubber friction are essentially different
from those discussed in the present paper, because of the very low elastic modulus of rubber and its high internal
friction. The rubber friction is first of all determined by the internal friction (Grosch [221]), so that it is mainly a bulk
property of the rubber (Persson [222]) rather than connected with the processes at the interface.

Thus, the friction is a complex multidisciplinary problem. Therefore, an essentional progress can be achieved only
by concerted approach of scientists from mechanics, material science, physics, chemistry, computer modelling, etc.
Moreover, from a theoretical side, the friction is a multiscale problem, e.g., it incorporates time scales from picoseconds
(for elementary atomic jumps) to seconds and hours (in junction’s aging) or even centuries (in earthquakes), so that
friction cannot be explained by one “general” model. And any theoretical approach must be strongly based on
and supported by experiments. However, as we already noted at the beginning of Sec. 2, the serious problem of
many experiments such as those with the SFA technique, is that they measure a single characteristic only, the time
dependence of the spring force. In the result, the attempts to extract a detailed information about the frictional
mechanisms are often essentially speculative. Of course, it is not simple to study in detail the structure and dynamics
of the interface which is closed from both sides by the solid macroscopic substrates, so a great experimental artistism
is needed here. But this is the necessary step to achieve further progress, and we would like to mention in this context
a few experimental works.

When the substrates are transparent, the sliding interface can be studied by optical methods. In a recent work due
to Rubinstein et al. [232], the experimental system was designed to allow light to pass through the interface only at
actual points of contacts, while at all other points the incident light undergoes total internal reflection at the interface.
This allows real-time visualization of the net contact and study of the onset of frictional slip. The experiments showed
that the onset of sliding is governed by three different types of coherent crack-like fronts. Two of these fronts propagate
at subsonic and intersonic velocities, while the third type of front, which propagates an order of magnitude slower, is
the dominant mechanism for the rupture of the interface: no overall motion of the blocks occurs until the slower front
traverses the entire interface.

The technique developed at Granick’s group (Mukhopadhyay et al. [166, 233]) was already mentioned in Sec. 5.2,
where we discussed the melting of the confined film. This technique is based on the fluorescence correlation spectroscopy
and allows measuring the diffusivity of molecules in the lubricant within the SFA. The idea is to measure the fluctuations
of the fluorescence intensity at a submicron-size spot of a laser beam. In turn, the intensity of fluorescence is directly
coupled with the atomic concentration at the small area of the spot. This allows one to find the rate of diffusion of
atoms into and out of this area. Note that the measuring of the autocorrelation function is the well-known technique
in diffusion studies in surface physics (see Sec. 3), where the fluctuations of the electron current are measured.

Another original technique was developed by Budakian and Putterman [193]. It may be applied to a metal-insulator
interface, where the isolator must have surface electronic states (e.g., the authors used a gold ball of 1 mm in diameter
sliding over polymethylmethacrylate or quartz). The main idea is that when the metal comes in a direct contact with
the insulator (i.e., at asperities), the surface states of the insulator at the contact area are discharged (the electrons
from the donor surface states move into the metal) leaving the contact area positively charged. These places can
be then imaged using the liquid crystal apparatus. It was found that the static frictional force (i.e., the maximum
force during stick in the stick-slip regime) is directly proportional to the charge transfer. Thus, the charge transfer
is a marker for the number of bonds ruptured at a particular slip event. The important result of this experiment is
that in the “smooth sliding” regime (for the velocity 5 µm/s for the gold/quartz pair), when the frictional force is
approximately constant, the charge transfer grows linearly with distance with the same proportionality coefficient as
for the stick-slip regime. This indicates that the “smooth sliding” corresponds in fact to uncorrelated small-amplitude
stick-slip events, which simply are not resolved at SFA experiments, in agreement with the earthquakelike model of
Sec. 6.2.
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As has been noted above, one of the main difficulties of tribological experiments is that the contact region is hardly
accessible to a direct study, because it is “closed” by two solids. In this context we would like to mention also a
recently developed “levitation” experimental setup (Kulik et al. [121]). In this case a slider “levitates” in a magnetic
field over the surface and can be easily removed, so that the surface and the lubrication film can be tested before as
well as just after the sliding, e.g., with the help of STM technique.

To conclude, the understanding the atomic processes occurring at the interface of two interacting materials in
relative motion is central to a number of pure and applied scientific areas as well as to many technological problems,
such as friction, adhesion, contact formation, wear, fracture, lubrication, etc. Presently, the tribology is shifting
from empirical material science to rigorous physical science. Therefore, we may expect soon many new interesting
discoveries in this old problem which entered its renaissance.
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