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The Extended Anderson Hamiltonian is used to study the effect of fluctuations of an adatom 
charge Q on the ionic part of the chemisorption energy. It is shown that dynamical effects 

essentially modify the classical expression E = - qQz for the energy of interaction between a 

static charge Q and a metal (‘p is the interaction energy for a unit charge). The exact solution for 
the one-electron two-level model as well as a variational solution for the Extended Anderson 

Hamiltonian model are given. Validity conditions for a variety of approximate schemes are 

studied. The results are presented for the Extended Anderson Hamiltonian model parameterized so 

as to describe some aspects of the Li/W and Li/Mo chemisorption systems. 

1. Intmduction 

The expression for chemisorption energy involves the ionic and metallic 
contributions. The metallic contribution is caused by hybridization of the 
metal states ]k) and the adatom state CA), while the ionic contribution is 
caused by the screening effects. It is well known that the energy of interaction 
between’a static point charge Q and a metal is given by 

Eimage = -(pQ*, (0 

where cp is the interaction energy for a unit charge. However, expression (1) 
does not take into account the adatom charge fluctuations. 

Let us denote the frequency of adatom charge fluctuations by wl. = 7;’ and 
that of nondispersive surface plasmons by w,,. As it was shown by Hewson and 
Newns [Xl, the value 7e = w; ’ determines the relaxation time of a plasmon 
subsystem. When the fluctuations are fast, 7r <3: re, the plasmon subsystem has 
no time to adjust to adatom charge changes and remains in a displaced but a 
static position dete~n~ by the adatom mean charge (Q}. In this case 
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(adiabatic limit) one can expect the expression (1) to be valid if we replace Q 
by (Q), the average being taken over the ground state. 

In the opposite case, rt B T,,, the plasmon subsystem instantaneously follows 
the adatom charge fluctuations. Let us consider an adatom with a single 
nondenerate electron level cA. If the level is occupied by one electron, the 
adatom is neutral. The ionic part of chemisorption energy is equal to 

Eion = -~pPx - ~pP0 = -c~(Q’), (2) 

where P2 = ( FI AaAA_o) is the probability for the adatom to have two electrons 
and PO = ((1 - ri,,)(l - AA_o)) is that for no electrons, 

&= 1 -A,, A*=A*o+AA_a, (3a) 

(Q’) = 1 - (AA) + 2(A,,A,_,), (3b) 
1 nAo is the number operator for an electron with spin u in the localized adatom 
state PA). If Ed - cF B A (cF is the Fermi level and A the half-width of the 
adatom level), then P2 = 0, (e2) = (0) and Eion = -cp(&). Similarly, if 

Ei=- c,_, X- A, then Eion = + ‘p( Q). In general, if the adatom level is situated far 
enough from the Fermi level, one obtains 

Eion = -(~lQl. 
If ICA - cFI -ez A, then Q = 0 and 

Eion = - 2cpP2 * 0. 

Therefore, in this case (inverse adiabatic limit) the adatom charge fluctuations 
essentially modify the classical expression (1). 

According to Tomonaga [2] and Haldane [3], the interaction of a local 
charge with the metal electrons may be considered as the one with the electron 
density fluctuations represented by a boson field. In the case of chemisorption 
these bosons are the surface plasmons (see ref. [4]). Thus the electrostatic image 
forces can be treated in terms of the Extended Anderson Hamiltonian (EAH 
model) 

H = cAnA + UnAonA_o + zcknks + c (V,,t&?,, + h.c.) 
ka ko 

+wori*ci+~(fi,- 1)(Li+(i*). (4) 

Here U is the energy of Coulomb repulsion between two adatom electrons with 
. . 

opposite spurs, VA, is the matrix element of mixing between the 64) and Ik) 
states; the operator e,*,, creates an electron in the ]k) state with energy ck and 
spin u, A,, = f$Jka; d* is the creation operator for a surface plasmon. 

The EAH model (4), originally proposed by Hewson and Newns [l], has 
been applied by many authors [5-81 to study the spectral properties of valence 
and core levels of the adatom. It was shown that under certain conditions the 
Coulomb repulsion U, the resonance half-width A and the position of the 
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adatom level Ed are renormalized, and new resonances appear in the density of 
states. In the one-electron case the exact result for the density of states was 
obtained by Hewson and Newns [6]. They used the exact recurrence relations 
for the adatom Green function deriver by Swain [9]. The EAH model was also 
used by Khomskii [lo] and Hewson and Newns [ 1 l] for mixed valence systems. 
The main question of interest was whether the polaronic effects can stabilize 
the intermediate valence state. 

The purpose of this work is to study the effect of coupling between surface 
plasmons and an adatom charge on chemisorption energy. The simplified EAH 
model proposed by Khomskii [lo] is considered in section 2. We find the exact 
solution for this model and determine the validity conditions of the adiabatic 
appro~mation, the inverse adiabatic approximation and the Khomskii varia- 
tional method. In section 3, we analyze the EAH model (4) in the adiabatic 
and the inverse adiabatic limits. The interpolation between these limits is 
performed by the variational method which is an extension of the Khomskii 
method. The numerical results for the EAH model parameterized so as to 
describe some aspects of the Li/W and Li/Mo che~so~tion systems show 
the importance of the correct calculation of the ionic contribution to chemiso- 
rption energy. 

2. The exact solution of the one-electron two-level model 

In order to investigate the validity conditions of various approximate 
schemes, we obtain in this section the exact results for the simplified EAH 
model with a single electron and two levels. The model Hamiltonian is 

H = ~~l?r, + egAB + (VP& t h.c.) + w,&*ri + ,,‘&&@ + &*). (5) 

This model was previously considered by Khomskii [IO] in the generalized 
mean field approximation. The wave function was written in the form 

I$,> = Mla) + +IP))lO)7 

where Ia> is the coherent boson state, h/a) = ala), and IO) is the vacuum state 
for an electron subsystem. Different types of the dependence of the occupation 
number n,, (n, = (ii*) is the measure of valence) on the level position Ed are 
given in fig. 1. One can see that for a certain range of model parameters, a 
jumplike transition between the integral-valence states (see curves 2 and 3 in 
fig. 1) as well as a transition from the integral-valence state to the 
intermediate-valence state (see curve 4 in fig. 1) are possible. 

In the present work we give the exact solution of the model (5). Let us 
represent the wave function fn the following way: 

14) = kcd~*) + f2$fB ( S*)] pacuum), (6) 
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(b) 

Fig. 1. (a) The occupation number nA and (b) the ground state energy z versus the adatom level 
position eA. The full curve is for the exact solution and the dashed curve for the variational 

solution:(l)cp=2, V=1;(2)cp=S, V=1;(3)cp=8, V=1;(4)~,=3.8025, V=O.l. 

fA(x)= E a,$, f&j= E b,$‘, 
n=O n=O 

: (JanI + lb,l*) n! = 1. 
n-o 

(7) 

(8) 

If we substitute this wave function to the S&r&linger equation and use the 
commutation relation [ci, f(ci*)] = f’(ci*), it is easy to show that fA and fB obey 
the system of differential equations (w. = 1, ~a = 0): 

vr,+(X+~)f~=(f--A-X~)fA~ (94 
Vf* + xf; = EfB. (b) 
If we exclude fB from eq. (9) we obtain the differential equation for f4: 

,(,+G)fL+ [x*\/;;;+x(l +c,--+-,h]f; 

+ [x(1 - ,)fi+ t(C - CA) - v’] fA = 0. (10) 
From the normalization condition (8) one can see that in the limit n + 00 the 
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coefficients a,, and b, tend to zero faster than l/m. Therefore, f’ and fa must 
be integral functions, i.e. analytical in the whole complex plane IzI < 00. The 
analytical solution of the system (9) or, similarly, of eq. (10) exists only for 
certain values of E which are eigenvalues of the Hamiltonian (5). 

The system (9) has a simple solution if V= 0 or cp = 0. If V= 0, 

fA-(x+fi)‘exp(-x~), fB=O, E=E~--(P+~, 

or 

&=O, fB--.X”, c=n. 

In the case of Q = 0, 

fA-cX”, f*-xU, 

and the eigenvalues are the roots of the equation 

(f-r,-n)(e-n)-P=o. 

Let us consider the limiting cases. From eq. (9b) we can obtain 

fa(x)= vg fg$ 
n-o 

(11) 

In the case of 

ICI * 1, (12) 

we can obtain from (11): 

ft3 = VfA/C. (13) 

If we substitute (13) to (9a) and solve the resulting equation, we can obtain 

J;\(x) - exp( -xfi)- 

The eigenvalues are the roots of the equation 

+-CA+(P)- P-0. 

This case corresponds to the adiabatic limit. The conditions for its validity are 
determined by eq. (12), i.e. 1~~ - 91 x=- 1 or V 2 1. 

In the case of 

Irl* 1, (14) 

we obtain from (11): fa = Vu,/r. Analogously to the previous case, we can 
obtain 

f*(x) = V2:eav e-“6 4 _ ci + 9”. 

A comparison of (15) and (18) leads to the equation for the eigenvalues 

f(E-fA+v)- V2em9,=0. 
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This case corresponds to the inverse adiabatic limit. Its validity conditions are 
determined by eq. (14), i.e. 1~~ - qt< 1, V+z 1 and ‘p +z l/le, - rpl. 

Let us consider now the exact solution of eq. (10). The substitu~on of (7) 
into (10) leads to the recurrence relations 

&+J + l)%+, - 
i 

V2 
e-CA-n-- 

c-n i 
a,+~a,_,=O. (16) 

The solution of these relations gives the function fA(z) which is analytical in 
the circle 1~1~ 6. In the vicinity of the point x = - 6, eq. (10) has two 
independent solutions; only one of them is analytical. We express it in the 
form 

(17) 

The coefficients c, are determined by the recurrence relations 

&cn + l>(c - CA + ‘p - n - l)c,+, 

-I- [(r-n)(E-(EA+qHr)-Q,(n+ I)- vqc, 

y/&-7+,_, =o. w 

The function fA determined by (17) and (18) is analytical in the circle 
lz + 61 c 6. In order to make the function!, and its derivative continuous, 
it is sufficient to require that 

where x0 (* 0 or - 6) is an arbitrary point. Thus, we obtain the analytical 
solution in the whole complex plane jzl< 00. The continuity condition (19) 
determines the eigenvalues of the Hamiltonian (5). 

The numerical data for the occupation number nA and the ground state 
energy e versus the adatom level energy cA for different values of ‘p and V are 
given in fig. 1. A comparison of the exact and the variational solutions leads to 
the conclusion about the good accuracy of the variational method for the 
calculation of the ground state energy if the states on the “loops” are not taken 
into account. At tp s 3 (this condition is valid for chemisorption systems) there 
is a qualitative agreement between the dependences nA(eA) obtained by both 
methods. In connection with the theory of mixed-valence systems, it is interest- 
ing to point out that for the definite range of parameters (p > 27/8, V - 0.1) 
the variational method predicts a discontinuous transition from the integral-va- 
lence state to the intermediate-valence state (curve 4 in fig. 1). However, the 
exact solution shows that only the continuous transitions between the integral- 
valence states may occur. 
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3. The variational method 

As was shown in section 2, the variational method gives with good accuracy 
the occupation number and the ground state energy for chemisorption systems. 
Now we obtain the variational solution for the initial EAH model (4). Let us 
first consider the limiting cases. 

From (4) we obtain 

dE/d(p= (aH/acp) =+(~+,/cp)“~((A~- l)(ci+ci*)). 

Haldane [12] has shown that in the adiabatic approximation (mean field 
approximation) the averages over the plasmon and electron subsystems are 

taken independently. In this case we have 

dE/d(p= -+o/~)“2 Q((i+ci*). (20) 

If we take into account that in the mean field approximation 

(6) = (ci*) = Q(cp/~~)*‘~, 

then we obtain from (20): 

dE/dq = - Q2. 

For small ‘p we obtain 

Eion = -qQ2, 

i.e. in the adiabatic limit the ionic part of chemisorption energy is defined by 
the same expression as the energy of interaction between a static point charge 
Q and a metal. 

In the inverse adiabatic limit, the ground state wave function can be 
represented by 

I$) = (IO)& + IlP, + Wi;)W,)~ (21) 

where the projection operators are determined by 

&) = (1 - AAo)(l - A&J, (22a) 

P, = A,,(1 - A*_) + ri,_,(l - A.&J, (22b) 

j2 = AAaA&-o, (22c) 

14,) is a many-electron wave function, and the coherent boson states IO), 11) 
and 12) are determined by 

ly) = exp[(q/w,)1’2(1 - y)(ci* -d)] Ivacuum). (23) 

By taking the average in eq. (4) over the plasmon subsystem with the help of 
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the wavefunction (21) we obtain the effective electron Hamiltonian 

H,, = (C, + ‘p)A, + (u- 2p)ri,,fi,_, + ~f~fi,, 
ka 

+ c ( VA, e-v’2wo E~,~,, + h.c.) -‘p. 
ka 

From (24) we obtain 

(24) 

dE/dv = @Hi,/%) = -(&“) + O(Ww,), (25) 

where 

> 
f.72 e-P/% 

m = c VA, e-P/2wo &tko + h.c. = 
ko ICA-EFI . 

Neglecting the terms of the order m/o,, in (25), we obtain the results derived in 
section 1 in a qualitative way. 

The interpolation between the limiting cases can be realized with the help of 
the variational wave function 

I#> = (IYOPO + IYiP, + IYzP2;) llcl,>Y (26) 
where yO, y, and y2 are variational parameters. Taking the average in eq. (4) 
over the plasmon subsystem with the help of the wave function (26), one 
obtains the effective electron Hamiltonian 

H = var (CA + 2cp)fiA + CvL 
ka 

+ cpY,2Fo + ‘PYI (Y, -2)3i+ [~+cpY~(Y2-4)lliz-‘P. (27) 

The following arguments bring about an essential simplification of this Hamil- 
tonian. In the symmetric case, cA = - 3 U, the symmetry leads to 

Yl=o, Yo’ -8, Y2= +P. 

In the non-symmetric case it is reasonable to put 

yi =(Y, yo=(Y--p, y2=Cx+p. (28) 

Then the Hamiltonian (27) takes the following form: 

H,,, = <,fi, + tifiAOfiA_-o + &fi,, + c ( &&tko + h.c.) + Cp( (Y - p)’ - Cp, 
ka ko 

(29) 
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where 

z* = E* + 2cp - (p/I2 + 2qm( p - I), 

tJ= u- 2cp + 2t4p - l)‘, 

%;r,k = V,, exp( - B297/2w0), (30) 

Minimization of the Hartree-Fock ground state energy with respect to a! 
and fl yields the system of coupled equations 

aE/aci = (aH”,,/aCX) = 2y( a: - p) + 2q( p - l)n, = 0, (31a) 

aE,/@?= -29(1 -II~)((Y--P)-S~~/~~+~FD(~- ~)Q,Q_~=O, (31b) 

where it is taken into account that 

aE/ar, = nAo, C, = r, + OnA_o, 

m= C VAAkt;;ro2ko + h.c. = VaE/aP, 
ka > 

Solving the system (31), we can obtain 

1 +An, 

a= l+A ’ 
p=L 

l+A’ 
A=:, 

where 

wf = - it n,,(l - nAo) +:*_,(I - nA_o) ’ 

(32) 

(33) 

From (32) we can see that the adiabatic approximation is valid at C+ B oO; 
then a: = nA and /3 = wO/wf -K 1. The inverse adiabatic appro~mation is valid 
atw,<(w,andthencu=j3=1. 

Note that the difference between the values Eion calculated in the inverse 
adiabatic and the adiabatic approximations is proportional to (0’) - (&)“. If 
there are no fluctuations (for example, if V--+ 0 or if jcA - ~~1, IcA + U - erI-+ 
cc) this difference tends to zero, so both approximations give the same result. 

To compute or, we use Newns model (131 where the local density of states 
has a semi-elliptical form and the Fermi level is situated in the middle of the 
metal band. In the special cases we obtain the following results: 

(a) if lCA-~rJ,ICA+ ii-crlB6, 

Wf - mu+, - +I, I& + 0 - +I] ; 

(b) if min[lCA - l rI, Ir, + ii- EJ] = d, 

-A; 

(c) : V>W, 

w, - 2P. 
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These cases can be described on the base of the following time-scale argu- 
ments. In case (a) the adatom level is situated far from the Fermi level, nAo ~2: 0 
or 1. In the main the system is found in the state with the lowest energy, 
whereas in the excited state the system is for the time rr - le.,, - er]-‘. In cases 
(b) and (c) the states with different occupations of the adatom levels have 
appro~mately the same total energy. In this quasi-degenerate case the period 
of charge fluctuations 7r is determined by the tunnelling between these states 
and, thus, it is - l/A (in case (b)) or - l/V (in case (c)), 

The dependences of the chemisorption energy D on w0 for various parame- 
ters Ed, U and V are shown in fig. 2. One can see that in the inverse adiabatic 
limit this dependence is strong enough. The dependences dE/dv versus Q are 
given in fig. 3. They demonstrate that dE/dy + Q2, as o0 decreases. If 
Q = 0.3, the chemisorption energy D = 3 eV and the EAI-I model describe 
some aspects of the Li/W and Li/Mo chemisorption systems. From fig. 3 one 
can see that for the same values of cp and Q, the difference in w0 for tungsten 
( o0 = 2 1 eV [ 141) and molybdenum (ws = 1.35 eV [ 151) leads to a difference of 
more than twice in the ionic part of che~so~tion energy. 
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Fig. 2. The chemisorption energy D versus the surface plasmon frequency we. Curves are for 

p = 0.2, W = 2 ( W is the metal band width). Full line: the variational solution; dashed line: the 

inverse adiabatic approximation; dash-dotted line: the adiabatic approximation; (a) l ,, = - 0.35, 

U = 0.80, V= 0.05; (b) eA = -0.02, U= 0.05, Y= 0.30; (c) fA = - 0.02, u = 0.95, V = 1 so. 

Fig. 3. dE/dg, versus the adatom charge Q for the EAH model for oe = 4.20 (curve 1) and 

we = 0.27 (curve 2). Curves are for W= 2, cp= 0.2, V = 0.95 and V= 0.5. At Q = 0.3, the 

parameters of the model correspond to the Li/W and Li/Mo chemisorption systems. 
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4. Conclusion 

In this work the effect of the dynamical nature of the adatom charge on the 
ionic part of the chemisorption energy is studied. It is shown that the charge 
fluctuations significantly modify the classical expression for the ionic part of 
the che~so~tion energy. On the base of the time-scale arguments one can 
determine various regimes for which, due to differences in physics, different 
theoretical methods must be used to compute the chemisorption energy. We 
have computed the adatom charge fluctuation frequency wr using the Khomskii 
variational method. A comparison of the exact solution with the variational 
one shows a very good accuracy of the variational method for chemisorption 
systems when q 2 3w,. 

We also point out that in the case of two adatoms, their charge fluctuations 
are independent. Thus, the dynamical effects of screening do not affect the 
interaction of these adatoms. As it was shown by Braun et al. [8], the energy of 
the electrostatic interaction between two chemisorbed atoms is equal to that of 
two static point charges (0). 
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