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We study the nonlinear dc response of a two-dimensional underdamped system of interacting atoms subject
to an isotropic periodic external potential with triangular symmetry. When driving force increases, the system
transfers from a disorder locked state to an ordered sliding state corresponding to a moving crystal. By varying
the values of the effective elastic constant, damping, and temperature, we found different scenarios and
intermediate phases during the ordering transition. For a soft atomic layer, the system passes through a
plastic-channel regime that appears as a steady-state regime at higher values of the damping coefficient. For
high values of the effective elastic constant, when the atomic layer is stiff, the intermediate plastic phase
corresponds to a traffic-jam regime with immobile islands in the sea of running atoms. At a high driving of the
stiff layer, a solitonlike elastic flow of atoms has been observed.
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I. INTRODUCTION

A lattice of interacting particles driven over a pinning
rigid substrate represents one of the most tractable models
for studying the nonequilibrium behavior and dynamic phase
transitions in a wide variety of condensed matter systems
such as vortex lattices in superconductorsf1,2g, Josephson
junction, charge-density wavesf3g, colloidsf4g, Wigner crys-
tals f5g, metallic dotsf6,7g, magnetic bubble arraysf8g, and
systems in tribologyf9g. In numerous experimental and the-
oretical studies, particular interest has been focused on the
behavior, motion, dynamical phases, and structure of the lat-
tice when driving force is varied. It was found that the sys-
tem dynamics depends strongly on the main model param-
eters such as atomic concentration, pinning strength, and
geometry of the substrate.

A number of studies are devoted tooverdampedmotion of
an array ofsrepulsivelyd interacting particles over arandom
squenchedd potential of the substrate, first of all because this
model describes an array of vortices in a dirty type II super-
conductor. The main control parameter in this case is the
elastic constantg of the arraysor the strength of the substrate
potential if the interparticle interaction is kept fixedd. For a
very stiff layer,g.gel sor a very weak pinning potential of
the substrated, the array is unpinned and begins to slide as a
whole at any applied dc force. For a less stiff layer,gpl,g

,gel, the array is pinned by the substrate and begins to move
when the applied forceF exceeds a threshold valueFs
sknown as the static frictional force in tribologyd. At low
driving, F*Fs, the motion proceeds through discharging of
elastic instabilities and exhibits a stick-slip behavior. The
locked-to-sliding transition is continuousssecond-orderd and
reversiblef10g. The moving array preserves its topological
order and slides as an elastic manifold. This regime is de-
scribed by the collective pinning theory of Larkin and
Ovchinnikov f11g. The crossover valuegpl increases with
increasing system size and eventually vanishes for an infinite
systemf12g sin the context of tribology, this question was
also considered by Sokolofff13gd. When the driving force
increases, the stick-slip regime continuously changes to a
regime of smooth sliding. The low-temperature dynamics of
an elastic manifold driven through random media was de-
scribed by Vinokuret al. f14g.

In the case of a soft array,g,gpl, the system passes
through three dynamical steady phases as the driving in-
creases: the locked state atF,Fs, the regime of plastic flow
at Fs,F,Fg, and finally the regime of a homogeneously
sliding array. In the plastic flow regime, the array splits into
trapped regions separated by channels in which the particles
flow plastically f15,16g. The flow channels in an otherwise
perfect pinned lattice may be described with the help of the
generalized Frenkel-Kontorova modelf17g. The transition
between the locked state and the plastic phase is continuous
ssecond-orderd at zero temperature and smooth at 0,T
,Tm, when the locked state corresponds to thermally acti-*Electronic address: obraun@iop.kiev.ua
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vated creep motionsTm denotes the melting temperature of
the 2D arrayd.

The transition from the plastic phase to the sliding or-
dered phase, predicted by Koshelev and Vinokurf18g, occurs
due to a decrease of a “shaking temperature”Tsh~1/v that
emerges because of fluctuations of the array during its mo-
tion over the random potentialsherev is the sliding veloc-
ityd. This last transition is sharpsfirst-orderd and hysteretic
f19g. According to Giamarchi and Le Doussalf20g, the slid-
ing phase corresponds to a “moving glass” phase, where the
particles move along highly correlated static channels. The
static structure factor demonstrates quasi-long-range transla-
tional order in the transverse directionswith a power-law
decay of the peak heightd but only a short-range order in the
longitudinal sdrivingd direction, probably due to slips be-
tween neighboring moving elastic domainsf21g.

The two-step transition from the locked state to an or-
dered sliding state has been observed experimentally for su-
perconducting flux lattices, although there is a debate
whether the strongly driven ordered state corresponds to an
ordered moving crystalf22g or a moving glass with smectic
order f23g or both, depending on the driving forcef24g and
the stiffness of the arrayf25g.

In recent years, particular interest has been focused on the
dynamics of an array driven over aperiodicsubstrate. These
systems show a richer variety of dynamical plastic flow
phases than those with a random substrate. The locked-to-
sliding transition in theoverdampeddriven two-dimensional
Frenkel-Kontorovas2DFKd model with different symmetries
of the substrateswith the square or triangular potentiald has
been studied by Reichhardtet al. f26–29g. Now the behavior
of the driven system depends first of all on the dimensionless
concentrationu sthe so-called coveraged, which is defined as
the ratio of the number of atoms to the number of minima of
the substrate potential.

In the commensurate case, whenu is a rational number,
the critical depinning force is larger than in the incommen-
surate case, and the locked-to-sliding transition occurs in one
step. This was shown, in particular, for the concentrations
u=1, 6/7, 2/3, 1/3, 1/4, 1/6, and 1/7 driven over the tri-
angular substrate, where the locked phase has an ordered
structure achieved after annealing an initial random configu-
ration, while the sliding phase corresponds to the moving
crystal sthe “elastic flow” phased f27g.

For an incommensurate coverage, when the annealed
locked state is typically disorderedf27g, the locked-to-
sliding transition proceeds through several plastic flow
phasesf26,28g. These phases depend strongly on the sub-
strate geometry and result from the interaction of the inter-
stitial atoms with the atoms at the commensurate positions.
In spite of their complexity, two general types of flow can be
identified: an elastic flowsa stable channel flowd of the sub-
lattice of interstitial atoms and a chaotic or mixing flow
when the motion of interstitial atoms is disordered. The tran-
sitions between these phases exhibit a hysteretic behavior
and are characterized by jumpssdipsd in the vsFd depen-
dence. At a low concentration,u,1, first vacancies or inter-
stitial defects depin and move in one-dimensional channels;
this corresponds to the plastic flow phase. Then with the
increase of driving, the whole lattice starts to move, under-

going an ordering transition from the plastic regime to the
elastic distorted triangular moving latticef27g.

For a high concentration,u.1, Reichhardtet al. f26g
observed for the square substrate potential the following se-
quence of phases during the force increasing process:sid the
pinned phase;sii d the phase where interstitial atoms begin to
move between the pinned atomic rows;siii d the motion of
interstitial atoms becomes chaotic, and the pinned atoms be-
gin to take part in the motion too, with any atom moving for
a time and then being trapped again;sivd the phase with
ordered solitonlike one-dimensional flow due to kinksslocal
compressionsd moving along the pinning channels; and, fi-
nally, svd the sliding crystal phase. A similar and even more
rich behavior exhibits an array driven over the rectangular
substratef28g.

An interesting phenomenon has also been found when the
direction of driving was variedf30g. For example, for certain
directions of the driving, a spontaneous symmetry breaking
was observed for the overdamped system of repulsively in-
teracting atoms on the triangular substrate. The atomic flow
is not in the direction that is aligned with the external force
but in one of the symmetry directions of the substrate. In the
case of a square lattice, the change of the force direction can
produce the series of dynamical mode-locking phases which
forms the devil’s-staircase structuref31g.

Contrary to a large number of studies of the overdamped
2DFK model at zero temperature, a relatively small number
of papers is dedicated to drivenunderdampedsystems, espe-
cially at nonzero temperatures. The main new issue of the
underdamped system isbistability: now an atom may possess
a running state even before the minima of the total potential
vanish because the momentum of the atom can help it to
overcome the barriers. The behavior of the underdamped
system is strongly affected by one more model parameter, the
damping coefficienth in Langevin equations, which de-
scribes the rate of energy exchange between the moving ar-
ray and the substrate.

The locked-to-sliding transition in the one-dimensional
FK model has been studied in a series of papersf32–36g. It
was shown that the transition to the running state occurs due
to dynamical instabilityof topological excitationsskinksd at
high velocitiesf33,37,38g. A similar behavior exhibits the
anisotropic 2DFK model, which may be treated as a system
of weakly coupled 1DFK chains. As for theisotropic 2DFK
model, it was studied for highly commensurate concentra-
tions onlyf39g. For a closely packed layer ofu=1 with a low
elastic constant, the transition to the sliding state is achieved
via the creation of an avalanche of moving particles that
leaves a depleted region in its wake, while for a stiff layer, an
island of moving particles nucleates the transition. In the
case of a half-filled layer,u=1/2, the scenario is more
subtle. Several dynamical phase transitions between states
with different atomic mobility were observed, and the mo-
bility of atoms as a function of the external force can vary
nonmonotonically with increasing force.

The aim of the present work is a detailed study of the
locked-to-sliding transition in the underdamped isotropic
2DFK model with the triangular substrate potential for a
partially filled layer with u,0.75, when the 1DFK system
demonstrates the highest mobilityf40g. We will show that in
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the underdamped system, the scenario of the locked-to-
sliding transition strongly depends on the value of the damp-
ing coefficient. On the contrary, with an overdamped system
where elastic flow appears for the commensurate case or for
the structures with an ordered locked state, in an under-
damped system even in an incommensurate disordered
locked state the system transfers to the sliding state of a
moving crystal at high driving forces. The plastic flow re-
gime, commonly observed in overdamped systems, now may
disappear or may exist as a transient state only. Novel phases
may emerge for some range of model parameters, such as a
disordered flow of atoms among the areas of immobile ones
for a soft layer, or solitonic phases for a stiff layer. Finally,
our simulation shows that the sliding state in the under-
damped system always corresponds to a crystalline configu-
ration. These results are especially important for tribological
systems, where the mechanism of the locked-to-sliding tran-
sition determines frictional properties of a lubricant film
f9,41,42g.

The paper is organized as follows. The model is intro-
duced in Sec. II. Simulation results are presented in Sec. III.
Finally, Sec. IV concludes the paper.

II. MODEL

We consider a two-dimensionals2Dd layer of particles
with position vectoru=sux,uyd subjected to a periodic sub-
strate potential with the triangular symmetry as a generic
example of isotropic 2D systems. The substrate potential is
chosen in the simplest form,

Vsubsx,yd =
1

2
«H1 − coss2px/axdcosspy/ayd

+
1

2
f1 − coss2py/aydgJ , s1d

where ax=a and ay=aÎ3/2 are the lattice constants. The
function s1d is characterized by the isotropic minima orga-
nized into the triangular lattice and separated by isotropic
energy barriers of height«, as shown in Fig. 1. The frequen-
cies of atomic vibrations at the minima are isotropic,vx
=vy=vs;s« /2md1/2s2p /ad. Flat maxima of the potentials1d
are organized into a honeycomb lattice.

We consider the case of an exponential interaction be-
tween the atoms,

Vsrd = V0exps− grd, s2d

whereg−1 is the radius of interaction. The repulsive interac-
tion corresponds, for example, to atoms chemically adsorbed
on a metal surface when, due to breaking of the translation
symmetry in the direction normal to the surface, the atoms
have a nonzero dipole moment which leads to their mutual
repulsionf43g. In the simulation we choseg=a−1, so that the
interaction is short-ranged.

One of the main parameters of FK-type models is the
effective elastic constantgeff=a2V9sr0d /2p2«, wherer0 is the
average interatomic distancef32g. This single dimensionless
number gives an indication of the strength of the elastic con-
stant of the atomic layer relative to the strength of the sub-
strate potential. A value ofgeff much smaller than 1 indicates
a relatively weakly coupled layer. This situation may corre-
spond, for example, to a monolayer adsorbed on a crystal
surface. A valuegeff*1 describes a stiff atomic layer com-
pared with the substrate depth. For example, the case of dry
friction between two blocks of material corresponds to this
limit.

The equation of motion for the displacement vectoruis1
ø i øNd is given by the Langevin equation,

ẅi + hẇi +
d

dwi
F o

js jÞid
Vsuui − u jud + VsubG = Fw + Frand

w ,

s3d

where w=ux or uy. We use dimensionless system of units,
where the atomic mass ism=1, the periodicity of the sub-
strate potential isa=2p, and its height is«=2, so that the
characteristic frequency isvs=1. The time scale that we use
in the problem is defined in terms of the oscillation period of
a particle in the substrate potential,ts=2p. The time scale
could also be defined in terms of the oscillation period of an
atom in the layer,t0=ts/Îgeff. The forceFw=Fx or Fy is the
externally applied force, whileFrand

w is the random force re-
quired to equilibrate the damped system to a given tempera-
ture T. In the present work, we consider a driving force act-
ing in thex direction only, so thatFx=F andFy=0.

The damping coefficienth strongly determines the dy-
namics of the systemf32–40g. For a small applied forceF,
the total potential experienced by a particle possesses an ar-
ray of local minima. Hence the particles are in the locked
state and the system mobilityB=kvl /F vanishes at zero tem-
perature and is exponentially small at low temperaturesshere
v is the drift velocityd. When F increases, the system will
behave in different ways depending on the value of the
damping coefficient. In the overdamped case,h*vs, at
some critical forceFc the minima in the total potential vanish
and the particle begins to slide over the corrugated total po-
tential with a maximum mobility ofB=smhd−1 so that the
system is in the sliding state. In the underdamped case,h
!vs, the system may possess a sliding solution even before
the minima of the total potential vanish.

The numerical procedure used for solving the equations
was the same as in our previous worksf33–35g. The atoms
were first thermalized at zero force; then the force was adia-
batically increased with the stepDF=0.005, allowing a time

FIG. 1. The substrate potential with triangular symmetry,Vsub,
plotted for «=2. The coordinates are scaled so thatX=x/a and Y
=y/a.
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of several hundreds ofts sor t0 if t0.tsd to equilibrate at
each new value of force where the equilibrated configuration
of positions and velocities was stored, allowing one to restart
the simulation with a finer force step. In this way, the force
was increased until one had moved through the transition.
Once the transition had been located for the given system
parameters, the atomic trajectories were examined with the
help of the visual molecular dynamicssVMD d techniquef44g
to allow the identification of the scenario for the transition.

III. RESULTS

We modeled the atomic layer byN=768 atoms placed
randomly onto the triangular substrate of sizeM =MxMy
=32332=1024, so that the dimensionless concentration is
u=3/4. Therandom initial configuration was then annealed.
We analyzed the locked-to-sliding transition for different val-
ues of the elastic constantgeff sgeff=0.0857, 0.257, and
0.857d, the damping coefficienth sh=0.1, 0.3, and 1d, and
two choices of the temperaturesT=0.001 and 0.1d. All quan-
tities that we use are dimensionless.

Figure 2 shows typical atomic configurations at the locked
state for two values ofgeff.

When the interatomic interaction is weak, as, e.g., for the
geff=0.0857 case shown in Fig. 2sad, almost all atoms lie at
the substrate minima. Among the areas with the perfect tri-
angular structure, there are regions with vacancies and a
small number of interstitial atoms. The interstitial atoms lie
at positions between the pinning sites, where they are
trapped due to the repulsion of interstitial atoms with those at
the pinning sites. These interstitial atoms play a key role in

the scenario of the locked-to-sliding transition, because they
are the first ones that start to move and initiate the transition
of the whole layer to the sliding state.

For higher values of the elastic constant, e.g., forgeff
=0.857 shown in Fig. 2sbd, the structure of the locked state is
more homogeneous, since due to the stronger interatomic
interaction with respect to the substrate potential, the atoms
may adjust their mutual positions by taking interstitial sites.

At high driving force the system is in the sliding state and
takes an ordered homogeneous configuration as shown in
Fig. 3. In both cases of the weak or stiff layer, the sliding
phase forms a moving crystal which consists of ordered do-
mains and dislocation lines between them. When the inter-
atomic interaction is stronger, the crystalline structure is
more ordered. For example, for thegeff=0.857 case shown in
Fig. 3sbd, one can clearly distinguish large ordered domains
of different orientations.

For the underdamped system we always observed a tran-
sition from a disordered locked state to an ordered sliding
state of a moving crystal. This is clearly seen from Fig. 4,
where we plot the static structure factor

Sskd = A−1Ko
i j

exphik · fuistd − u jstdgjL , s4d

whereA is the area of the system andk¯l stands for aver-
aging over time.

As we can see, in both casesSskd changes significantly in
the sliding state. Although the appearance of two peaks at
largeky in Fig. 4scd may be considered as an indication of a
smectic order, in the VMD simulation we have clearly ob-
served the crystalline flowf45g.

FIG. 2. Locked state of the system for the concentrationu
=3/4 atT=0.001 for two values of the effective elastic constant:sad
geff=0.0857 andsbd geff=0.857. Atoms are indicated by black dots
and pinning sites by open circles.

FIG. 3. Crystalline structure of the sliding state foru=3/4, h
=0.1, andT=0.001 atF=0.8 for two values of the effective elastic
constant:sad geff=0.0857 andsbd geff=0.857. Atoms are indicated
by black dots and pinning sites by open circles.
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However, the scenario of the locked-to-sliding transition
and the intermediate phases through which the lattice passes
during the ordering transition are strongly determined by the
values of geff, h, and T. In the simulations, we observed
several phases that we define as follows.

sid The locked phaseof immobile particles that is disor-
dered and with homogeneity that increases withgeff.

sii d The plastic phase, where different portions of the lat-
tice are moving with different velocities, or some are moving
while others remain pinned. The plastic phase can be in the
form of immobile regions in the sea of running atoms that we
call the “traffic-jam” (TJ) plastic phase, or in the form of
channels that we call theplastic channel phase. In the TJ
plastic phase all particles are mobile, but at any moment a
subset of particles spends some short time pinned and then
continues to move again. In the VMD simulations, these
pinned regions appear as entities that migrate in the direction
opposite to the driving force. On the contrary, with the TJ
plastic phase where all particles participate in the motion, in
the plastic channel phase only one part of the particles is
mobile while the other remains pinned for an extremely long
time. In the simulation, one can observe the channels of crys-
talline or disorder flow separated by a channel of immobile
particles. For some values of the system parameters, the
channels of crystalline flow separated by the channels of dis-
order or TJ flow can also appear, but by changing the frame
of reference one can go back again to the channels of mobile
and immobile particles.

siii d The solitonic phase,where the motion of particles
inside the row is not continuous but in the kink like or pulse-
like fashion.

sivd The moving crystalthat represents an ordered homo-
geneous sliding phase.

A. Ordering transition of the weakly bound layer

Figure 5 presents theBsFd dependencies for the weak
interatomic interactiongeff=0.0857 and two values of damp-
ing h=0.1 and 0.3 at low and high temperature. We observed
several intermediate phases during the locked-to-sliding tran-
sition.

As the force increases, at the low temperatureT=0.001,
the system undergoes a sharp transition from the disordered
pinned phase to the moving crystal phase. In the case of low
damping,h=0.1 fsee Fig. 5sadg, the system transfers directly
from the locked state to the sliding state without any inter-
mediate steady-state regimes. At the fixed value of force that
corresponds to the critical valueFc<0.415, we observed the
whole process of transition during the time interval of our
simulations. The atomic motion starts first in the regions with
vacancies while the rest of the lattice is immobilef45g. The
mobile regions grow and spread mainly in the direction of
driving force forming channels with very disordered flow of
particles in the driving direction. This stage represents a typi-
cal example of plastic phase with channels of disordered
flow separated by the regionsschannelsd of immobile par-
ticles. Further, the moving channels broaden in they direc-
tion. During this process, the atomic structure inside the
moving regions becomes more and more crystalline. The or-
dering starts first at the middle of a moving channel and then
broadens in they direction. At the same time the particles in
the immobile channels begin to move chaotically. At the next
stage of the plastic phase we observed a channel of ordered
elasticscrystallined flow and a channel with disordered flow
of particles. With a further increase of time, the ordering
spreads over the whole lattice and the system reaches the
sliding state of a moving crystal. The whole lattice flows
elastically and its structure is preserved during motion.

FIG. 4. sColor onlined Structure factor for the softsgeff

=0.0875d and stiff sgeff=0.857d layers forh=0.1 andT=0.001 at
two values of the force:sad andsbd for F=0.11sthe locked state, see
the configurations in Fig. 2d, andscd andsdd for F=0.8 sthe sliding
state, see the configurations in Fig. 3d.

FIG. 5. The mobilityB as a function of driving force foru
=3/4 for thesoft layer withgeff=0.0857 and two values of damping
coefficient:sad h=0.1 andsbd h=0.3 at low temperatureT=0.001
ssolid trianglesd and at high temperatureT=0.1 sopen trianglesd.
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At the high temperatureT=0.1, due to thermal fluctua-
tions the locked-to-sliding transition starts at a lower value of
the depinning force as one can see from Fig. 5sad. While in
the low-T case the atoms in the locked state were immobile,
at the high temperature the drift of atoms starts in the sea of
thermally fluctuating particles. Then the scenario is similar to
that of the low-temperature case. The moving regions appear
at places with a lower concentration of atoms, where vacan-
cies allow the atoms to move in the driving direction. Then a
river of running atoms is formed, and its width grows. Fi-
nally, the system transfers to the crystalline sliding state,
passing through the plastic phase.

For a higher value of the damping coefficienth=0.3 fsee
Fig. 5sbdg, the scenario of the transition is in general very
similar to that of theh=0.1 case. Now the transition starts at
a higher value of the force. When the force increases at the
low temperatureT=0.001, the system again transfers first to
the plastic phase before it reaches the crystalline sliding
state. However, contrary to the previous case ofh=0.1, now
the plastic flow appears as a truly steady state. TheBsFd
dependence shown in Fig. 5sbd demonstrates a narrow step
sonly three pointsd at F<0.64. This step corresponds to the
plastic phase that in the time interval of our simulation ap-
peared as a steady statef45g. The atomic structure in this
state is shown in Fig. 6.

One can see a stationary channel of running particles
sstrips at the top and bottom of the figure; recall that we use
periodic boundary conditionsd separated by the channel of
immobile atomsswide region at the middle of figured. The
distribution of atomic velocitiesPsuvud for different values of
the local densityr is shown in Fig. 7 as a three-dimensional
map. The distribution has two well-separated peaks, one cor-
responding to sliding atoms and another to immobile atoms.
Also, this figure shows that immobile regions are character-
ized by a slightly higher local concentration of atoms.

Finally, at large driving the system transfers to the crys-
talline sliding phase.

At the high temperatureT=0.1, the plateau on theBsFd
dependence with a channel-like plastic steady state is de-
stroyed. The locked-to-sliding transition is smooth as shown
in Fig. 5sbd. On increasing the driving force, the particles
first start to move chaotically in the regions with vacancies.
Among the areas with chaotic motion, there are immobile
islands with thermally fluctuating particlesf45g. As one can
see from Fig. 8, the immobile islands resemble two-
dimensional “traffic jams”sTJ’sd in the sea of running atoms.
Note that a local concentration in the running regions is
lower than in the regions of TJ’s.

FIG. 6. sColor onlined Snapshot configuration of the plastic
channel phase atF=0.645 forgeff=0.0857,h=0.3, andT=0.001.
Solid curves show atomic trajectories. The channel of moving at-
oms is separated by the wide region of immobile atomssthe middle
part of the figured.

FIG. 7. sColor onlined Distribution of atomic velocitiesPsuvud
for different values of the local densityr scalculated as an average
over a circle of radius 3ad for the system parametersgeff=0.0857,
h=0.3, andT=0.001 in the plastic channel regime at the forceF
=0.645 for the configuration of Fig. 6.

FIG. 8. sColor onlined Snapshot configuration of the TJ plastic
phase atF=0.57 for geff=0.0857, h=0.3, andT=0.1, whenB
<0.2. Solid curves show atomic trajectories.
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As the force increases, the areas with disordered motion
spread over the whole lattice, and we observe a very disor-
dered flow of particles in the driving direction. At a higher
driving force, the process of ordering begins, and the disor-
dered flow transforms into the sliding crystalline phase.

If we increase the stiffness of the layer to the valuegeff
=0.257, the scenario of the locked-to-sliding transition re-
mains essentially the same, as one can see from Fig. 9.

For the case of low damping,h=0.1, the only difference
from the geff=0.0857 case is in the structure of channels at
the low temperature: now we observed a formation of four
channels, two channels of moving atoms separated by two
channels of immobile particles. For the case ofh=0.3 at the
low temperaturefsee Fig. 9sbdg, a new intermediate disor-
dered phase emerges at the beginning of the transition prior
to the plastic steady state with channel flow. AtF<0.54, the
mobility increases to the valueB<0.12 and remains ap-
proximately constant with further increase of the force. This
plateau corresponds to a disordered flow of particles among
the areas of the immobile onesf45g, which again is reminis-
cent of the TJ regimessee Fig. 10d.

As the force increases further, the disorder phase trans-
forms into the plastic-channel one atF<0.615, which ap-
pears again as a steady state, at least in the time interval of
our simulation. At this value of the force, we observed two
moving channelsf45g, one wider channel of elastically mov-
ing particles and another channel with slower moving and
less ordered atoms as shown in Fig. 11.

Finally, at F=0.62 the system transfers to the state of a
sliding crystal. For the case ofh=0.3 and the high tempera-
ture T=0.1, the channel-flow regime is absent, and the
locked-to-sliding transition proceeds through the TJ plastic
flow regime.

B. Ordering transition of the stiff layer

The mobility as a function of the driving force for the stiff
layer with geff=0.857 for two values of damping coefficient
is presented in Fig. 12.

Starting from the locked phase, we observed a disordering
of structure when the driving force increases. For the low
dampingh=0.1 at the low temperatureT=0.001 fsee Fig.
12sadg, an intermediate phase appears atF<0.12 when the
system goes from the pinned state to the disordered steady
state with low mobility B,0.1. At this phase, the atoms
move chaotically around their pinning sites. Looking at
atomic trajectoriesssee Fig. 13d, we may suggest that this
state again corresponds to a TJ plastic regime with immobile

FIG. 9. The mobilityB as a function of driving force foru
=3/4, geff=0.257, and two values of damping coefficient:sad h
=0.1 andsbd h=0.3 atT=0.001ssolid trianglesd andT=0.1 sopen
trianglesd.

FIG. 10. sColor onlined Snapshot configuration of the TJ plastic
phase atF=0.6 for geff=0.257,h=0.3, andT=0.001. Solid curves
show atomic trajectories.

FIG. 11. sColor onlined Snapshot configuration of the channel
plastic phase atF=0.615 for geff=0.257, h=0.3, andT=0.001.
Solid curves show atomic trajectories.
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islands surrounded by regions of slowly running atomsf45g.
Unfortunately, we were unable to study these TJ regimes in
detail because of the too small size of our system.

The TJ disordered steady state survives until the driving
force F<0.34. Then the mobility increases and the system
transfers to the ordered state of a moving crystal, passing
through the plastic-channel regime. Contrary to the case of a
soft system, in the stiff system the atomic motion in the rows
is arranged in a solitonlikespulsed fashionf45g. The structure
of sliding atoms for the stiff layer is shown in Fig. 14sbd,
where the occurrence of a kinksindicated by an arrowd is
clearly seen. For comparison, Fig. 14sad fobtained by enlarg-
ing Fig. 3sadg shows the rows of sliding atoms for the soft
atomic layer.

For a larger dampingh=0.3, the first plateau atB<0.25
for 0.23,F,0.54 again corresponds to the plastic TJ flow,
but now atomic motion is essentially one-dimensional along
the channels in the driving directionf45g. The moving atoms
strongly oscillate in the transverse direction but remain
within their rowsssee Fig. 15d.

The motion inside each row is similar to the 1D TJ motion
in the anharmonic 1D FK modelf36g: inside a row, the sys-
tem splits into closely packed immobile 1D islandsstraffic
jamsd and less dense running domains. We observed that the
less mobile regions are again characterized by a higher local
concentration of atomsssee Fig. 16d.

As the driving force increases and reaches the valueF
<0.6, the system continuously transfers to the next meta-
stable state withB<0.65fthe second well-defined plateau on
the BsFd dependenceg. The atomic structure of sliding rows
at the second plateau is shown in Fig. 14scd. With the help of
the VMD technique, we observed at this stage a formation of
moving antikinksslocal expansionsd in each row. These an-

tikinks form domain walls oriented in they direction which
move in the oppositex directionf45g. With a further increase
of the force, the system becomes more and more ordered and
corresponds to elasticscrystallined flow of particles.

At the higher temperatureT=0.1, when the transition
starts from the state of thermally fluctuating particles, the
scenario remains approximately the same, because the melt-
ing temperature of the stiff system is much higher.

C. Overdamped system

Also we studied the locked-to-sliding transition for the
case of the high value of damping coefficienth=1, when the
system is overdamped.

In the case of a soft atomic layer that is equivalent to the
case of strong pinning, the system never reaches the sliding
state for forcesFø1. Due to the mutual action of strong

FIG. 12. The mobilityB as a function of driving force foru
=3/4, geff=0.857, and two values of damping coefficient:sad h
=0.1 andsbd h=0.3 atT=0.001ssolid trianglesd andT=0.1 sopen
trianglesd.

FIG. 13. sColor onlined Snapshot configurations of the TJ plastic
phase forgeff=0.857,h=0.1, andT=0.001 atF=0.165stop paneld
andF=0.33 sbottom paneld. Solid curves show atomic trajectories.
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pinning and high damping even at high driving forceF
<0.8 and high temperatureT=0.1, the mobility of the sys-
tem remains quite low,B,0.4.

For the stiff atomic layer whengeff=0.857 atT=0.001, we
observed the appearance of a plateau atF<0.25 with B
<0.35 that corresponds to the TJ plastic flow.

As we can see from Fig. 17, with a further increase of the
force, the system remains in that phase with only a very slow

increase of the mobility at higher driving. Even at the high
driving, when in all previous cases we observed the transi-
tion to the state of a moving crystal, now we found a typical
TJ plastic phase with very slow flow of particles around the
islands of the immobile ones. This could be seen from the
plot of the static structure factor at maximum driving force
F=0.8 in Fig. 18.

At the high temperature, the situation remains generally
the same. When the driving force increases, the system trans-
fers from the sea of thermally oscillating particles to the TJ
plastic phase with continuously increasing mobility. These
results are in very good agreement with the results of Reich-
hardtet al. f26,27g, where a detailed study of the locked-to-
sliding transition for overdamped systems with the concen-
trationsu,1 was presented. For the triangular substrate, the
system depins elastically for the commensurate atomic con-
centrationsu=1, 6/7, 2/3, 1/3, 1/4, and 1/7, while for the
incommensurate case the motion is plastic.

FIG. 14. The two neighboring rows of sliding atoms atT
=0.001 for sad geff=0.0857,h=0.1, sbd geff=0.857,h=0.1 san ar-
row indicates a position of the kinkd, and scd the rows of sliding
atoms in the intermediate regime atF=0.72 for geff=0.857 andh
=0.3. Atoms are indicated by black dots and pinning sites by open
circles.

FIG. 15. sColor onlined Snapshot configurations of the 1D TJ
plastic phase forgeff=0.857,h=0.3, andT=0.001 atF=0.4. Solid
curves show atomic trajectories.

FIG. 16. sColor onlined Distribution of atomic velocitiesPsuvud
for different values of the local densityr scalculated as an average
over a circle of radius 3ad for geff=0.857,h=0.3, andT=0.001 in
the plastic flow regime at the forceF=0.4 for the configuration of
Fig. 15. The inset shows the same figure from a different
perspective.

FIG. 17. The mobilityB as a function of driving force foru
=3/4, geff=0.857, andh=1 at T=0.001 ssolid trianglesd and T
=0.1 sopen trianglesd.
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IV. CONCLUSION

We have presented a detailed numerical study of the
locked-to-sliding transition in the underdamped isotropic
two-dimensional Frenkel-Kontorova model with a triangular
substrate potential for a nontrivial ground stateu=3/4. Our
results show that the system parameters, particularly the
damping coefficient, play a crucial role in the scenario of the
locked-to-sliding transition and determination of the struc-
ture of the sliding state.

When the driving force increases, the underdamped iso-
tropic system always transfers from a disorder locked state to
an ordered sliding state of a moving crystal. The scenario
and the intermediate phases passing during the ordering tran-
sition strongly depend on the values of the system param-
eters such as the effective elastic constant, damping coeffi-
cient, and temperature. We found that the following
distinctive dynamical phases could be present during the pro-
cess of the locked-to-sliding transition:sid the locked phase,
sii d the disorder TJ plastic phase,siii d the plastic channel
flow, sivd the solitonic phase, andsvd the sliding state of a
moving crystal.

For the weakly bound layer,geff=0.0857, in the case of
low damping at low temperature, the system transfers di-
rectly from the disorder locked state to the sliding state of a
moving crystal passing the transient plastic-channel regime
that at higher damping appears as a truly steady state.

For the higher value of the effective elastic constant,geff
=0.257, at the low temperature the scenario of the ordering
transition remains essentially the same. The difference with
respect to the lower values ofgeff is more pronounced at
higher damping. While at the low damping only the structure
of the channels in the plastic flow regime is changed, at the
higher value of damping a new intermediate TJ-like plastic
phase emerges at the beginning of the transition prior to the
plastic-channel steady state.

For the stiff atomic layer,geff=0.857, the system passes
during the ordering transition through different intermediate

disorder flow regimes. We observed two plateaus on theBsFd
dependence. The first steady state corresponds to a disor-
dered TJ plastic phase with the immobile atoms in the sea of
sliding atoms with low mobility. When driving force in-
creases, the system transfers to the state of a moving crystal
where, contrary to the case of soft systems, the atomic mo-
tion inside the rows is arranged in a solitonlike fashion. For
higher damping, a new intermediate solitonic phase emerges
prior to the elasticscrystallined flow of particles. At this stage
we observed a formation of moving antikinks inside the
rows. These kinks form perpendicularly oriented domain
walls which move in the direction opposite to the external
driver.

At higher temperature, the depinning force decreases and
the drift of atoms starts from a sea of thermally fluctuating
particles. While for the stiff atomic layer the scenario of the
transition remains almost the same, for the soft system and at
the higher value of damping, the plastic channel flow regime
that existed at low temperature is destroyed. When driving
force increases, the system transfers first from the locked
state to the disordered TJ plastic regime and then to the slid-
ing crystalline phase.

When the system is overdamped, the lattice can depin
only in the case of strong interatomic interactionsgeff

=0.857d. For the soft atomic layersgeff!1d, the mobility
remains at a low level even at the high value of the driving
force sF<0.8d. We observed the transition from the locked
state to the disorder TJ plastic flow which retains this struc-
ture even at very high driving force. Thus, our results for the
u=0.75 case are in agreement with previous studiesf26,27g
and confirm that in the overdamped system at incommensu-
rate concentrations the motion is plastic at high driving.

Although we have considered only one value of the con-
centration, our results should be qualitatively valid for a gen-
eral case of incommensurate systems with 0.5,u,1. While
the studies of the overdamped motion have applications in
such areas as dynamics of vortex lattices, charged density
waves, colloidal suspensions, and magnetic bubble arrays,
where already a lot of experimental works have been done,
the studies of underdamped motion are of great importance
for tribology f9,41,42g. The studies of the mechanism of the
locked-to-sliding transition could give a great contribution to
understanding the phenomena of friction and lubrication be-
tween two flat macroscopic surfaces on atomic scale. Since
solid-state physicists and chemists have only recently begun
to study the microscopic friction, new experiments and the-
oretical approaches are needed in order to complete these
studies.
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FIG. 18. sColor onlined Structure factor for the overdamped stiff
layer sgeff=0.857d for h=1 andT=0.001 atF=0.8.
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