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Driven kinks in the anharmonic Frenkel-Kontorova model

O. M. Braun,1,* Hong Zhang,2 Bambi Hu,2,3 and J. Tekic2
1Institute of Physics, National Ukrainian Academy of Sciences, 03650 Kiev, Ukraine

2Department of Physics and Centre for Nonlinear Studies, Hong Kong Baptist University, Hong Kong
3Department of Physics, University of Houston, Houston, Texas 77204-5505, USA

~Received 2 December 2002; published 6 June 2003!

Multiple and supersonic topological excitations~kinks! driven by an external dc force in the Frenkel-
Kontorova model~a chain of atoms subjected to a periodic substrate potential! with the exponential interatomic
interaction are studied with the help of numerical simulation. The simulation results are interpreted in terms of
dynamics of two limiting cases, the exactly integrable sine-Gordon equation and the Toda chain. The stability
of driven kinks and scenarios of their destruction are described for a wide range of model parameters.
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I. INTRODUCTION

Nonequilibrium dynamics of simple systems of intera
ing particles subjected to an external periodic potent
damping, and driven by an external force, is a very rich a
interesting theoretical problem, as well as having many
portant applications in such areas as mass transport, con
tivity, tribology, Josephson transmission lines, etc. In th
systems the mass or charge transport is carried out by t
logical excitations, the so-called kinks that describe a lo
compression~or expansion in the case of antikink! of the
chain. A classical example of these type of systems is
exactly integrable sine-Gordon~SG! equation, where the
kink has the following form:

ul~ t !54 arctan exp@7~ la2vkinkt !/d#. ~1!

Here,ul describes the shift of thel th atom from a minimum
of the substrate potential

Vsub~x!5
1

2
«@12cos~2px/a!# ~2!

of the height«52 and perioda52p ~throughout this pape
we use dimensionless system of units and assume tha
atomic mass ma51), vkink is the kink velocity, d
5(aAg)A12vkink

2 /c2 is its width, c5aAg is the sound
speed in the chain of atoms harmonically interacting with
elastic constantg, and the signs7 correspond to kink and
antikink configurations, respectively. The SG kink may
considered as a quasiparticle with the effective m
m(vkink)5(2/p2Ag)/A12vkink

2 /c2, which moves freely
through the system. In the discrete SG model~the well-
known Frenkel-Kontorova model, e.g., see Ref.@1#, and ref-
erences therein!, however, the motion of the 2p kink is sub-
jected to an effective Peierls-Nabarro~PN! periodic potential
and, thus, the kink radiates phonon and loses its kinetic
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ergy during motion. Therefore, to keep the kink moving, o
has to apply an external dc forcef, so that the motion equa
tion takes the following form:

ül~ t !1hu̇l~ t !1sinul2V8~ul 112ul1a!

1V8~ul2ul 211a!5 f , ~3!

where the dot stands for the time derivative,h is the coeffi-
cient of the external viscous damping, which models the
ergy exchange between the chain and the substrate, an
interaction between the atoms,V(x), is assumed to be purel
harmonic in the classical Frenkel-Kontorova model,V(x)
5 1

2 g(x2a)2.
The SG kinks of the same topological charge repel o

another. Therefore, the steady-state solution of the driven
system should correspond to either a single moving kink~the
2p kink with the topological chargep51) or a train of
equidistant kinks~the so-called cnoidal wave!. In thediscrete
SG model, on the contrary,multiplekinks with the topologi-
cal chargep>2 may also exist. This fact was first observe
by Peyrard and Kruskal@2# in numerical simulation. It was
found that a ballistic motion of 4p and 6p kinks in the
classical FK model is possible, if the elastic constantg ex-
ceeds some critical valuegp ~wheregp!1), and the velocity
of these multiple kinks has to have a certain value that
creases withg. Later, the ballistic motion of thep52 kink
was studied numerically by Savinet al. @3# with the help of
the pseudospectral method, where a hierarchy of the do
kink states characterized by different distances between
single kinks was found. Each of these bound states is
namically stable for a certain~preferred! value of the veloc-
ity given by a set of model parameters.

A qualitative explanation of existence of multiple kink
was given by Malomed@4# ~see also a more recent paper
Ustinov et al. @5#!. Due to the discreteness effects, the ‘‘fo
ward’’ 2p kink of the multikink configuration emits a stron
radiation behind itself, which helps the kinks immediate
following it to overcome the PN barriers. Thus, the multip
kinks are stable due to ‘‘compensation’’ of the waves emit
by single kinks when these waves happen to be out-of-ph
and suppress each other. A more rigorous explanation
©2003 The American Physical Society02-1
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given later by Champneys and Kivshar@6#. Due to the dis-
creteness effects, the motion equation of the FK model in
quasicontinuum approximation reduces to a perturbed
equation with a fourth-order dispersion term. Without t
driving and damping,f 5h50, the propagating 2p kink so-
lution does not exist at all; the single kink is always pinn
by the PN potential. At the same time, the motion equat
has four analytical solutions for the double-kink bounda
condition. One of these solutions corresponds to the 4p-kink
propagating with the fixed velocityv2 (v2 /c5A2/3'0.82
for g51), while three other solutions describe ‘‘excited
states of the double kink and are characterized by lower
locities. Besides, there also exist solutions with higher to
logical charges.

Motion of the double kink in thedrivenunderdamped FK
model was studied numerically by Ustinovet al. @5#. They
observed four ‘‘bunched’’ states of two single kinks, whic
differ by the number of the oscillations trapped between
two 2p kinks. Such ‘‘resonant’’ states exist for certain inte
vals of the driving force, which overlap. At the lower boun
ary of these intervals, the velocity of the double kink is ve
close to that calculated by Champneys and Kivshar@6#. The
driven FK model was also studied in a series of papers
Braun et al. @7–10#, where the existence of multiple kink
was observed as well. In the SG model, however, the to
logical excitations are always subsonic, the kink can
propagate with a velocityvkink larger than the sound speedc
because of Lorentz contraction of kink’s width. Moreover,
the discrete FK chain, the kink decays even earlier, at a
locity vcrit,c, because of a strong radiation of phonons
the kink’s tail @10#.

However, in the generalized FK model, where the int
atomic interaction isanharmonic, the kink may reach a su
personic velocityvkink.c ~e.g., see Refs.@8,11#, and refer-
ences therein!. A limiting case of the discrete anharmon
model is the exactly integrable Toda chain@12#, where the
substrate potential is totally absent, while the adjacent at
interact via exponential law

V~x!5
a

b
exp@2b~x2a0!#1a~x2a0!. ~4!

ExpandingV(x) into Taylor series for small (x2a0), we
obtain V(x)'a/b1 1

2 (ab)(x2a0)2@12 1
3 b(x2a0)#.

Thus, at a small deviation of the interatomic distances fr
the equilibrium distancea0 , ux2a0u!b21, the Toda poten-
tial is close to the harmonic potential with the elastic co
stantg5ab. For the higher deviations, a measure of no
linearity of interaction is determined by the anharmonic
parameterb, and in the limitb→` the Toda potential re-
duces to the hard-core potential. The Toda chain allows
existence of adynamicalsoliton, which has the following
form:

ul5
1

b
lnS 11exp$2m@~ l 21!a02vTodat#%

11exp@2m~ la02vTodat !#
D , ~5!

where ul describes now the displacement of thel th atom
from the equilibrium positionxl05 la0. The parameterm in
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Eq. ~5! is coupled with the soliton velocityvToda by the re-
lationship vToda5csinh(ma0)/(ma0), and c5a0Ag/ma is
again the sound velocity in the chain. The Toda soliton i
one-parameter dynamical soliton localized within a reg
;m21. It is characterized by the effective massm(vToda)
52m(vToda)/b and describes a local compression of t
chain characterized by a jump of displacementDu[u1`

2u2`522ma0 /b, which continuously depends on th
soliton velocity. Note that the dynamical soliton must mo
with the supersonic~faster-than-sound! velocity vToda.c,
because in the limitvToda→c the soliton width tends to in-
finity and the soliton disappears. Note also that the To
soliton cannot be driven by a dc force. Because the syste
spatially homogeneous, the external forcef will induce a
drift of all chain’s atoms with the same velocityv5 f /h.

If the Toda chain is disturbed, e.g., by the substrate
tential ~2!, the system becomes nonintegrable and the sol
should disappear because of phonon radiation. In the pre
paper, we will discuss the commensurate situation o
when a05a52p. In the presence of the external substra
potential due to boundary conditions at infinity, the ‘‘jump
Du must be equal topa with p being an integer. Thus, on
may expect the existence of multiple solitons with a top
logical chargep>1, if the width of the Toda soliton matche
with the period of the substrate potential. For thep kink, we
obtain 2m5pb or

vToda

c
5

sinh~pbp!

pbp
. ~6!

For example, for the anharmonicity parameterb51/p, we
have vToda/c5(sinhp)/p'1.18 for the 2p kink ~a single
kink, p51), vToda/c'1.81 for the 4p kink ~the double kink,
p52), andvToda/c'3.34 for the 6p kink ~the triple kink,
p53), correspondingly. Thus, the supersonic and multi
kinks may be treated as Toda solitons ‘‘disturbed’’ by t
external periodic potential.

Supersonic topological solitons, which move almost wi
out radiation, were first observed by Bishopet al. @13# in
molecular dynamics study of polyacetylene. Then, the sup
sonic kinks were studied by Savin@14# in the framework of
thef4 model with anharmonic interatomic interaction. Late
Zolotaryuket al. @15# have studied numerically with the hel
of the pseudospectral method the ballistic supersonic ki
of different topological charges in the framework of the F
model with exponential interatomic interaction. It was fou
that the multiple kink exhibits a hierarchy of ‘‘excited
states,n51,2, . . . ,nmax, which may be considered asn
acoustic Toda solitons bounded together, when the sum
their amplitudes coincides with the period of the substr
potential. All these solutions were found to be dynamica
stable and propagate with their own preferred velocities.

The goal of the present work is a detailed study of ki
propagation in theanharmonic drivenFK model. Indeed,
now the Toda soliton may be driven by the external for
because the atoms far away from the soliton are pinned a
minima of Vsub(x), provided the force is not too large,u f u
,«/251. The driven kinks were already considered in o
previous papers@7–11#. Now, however, we present a muc
2-2
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more detailed study of the problem for a wide range
model parameters. In particular,we determine the interval
of forces and kink’s velocities where the kinks are stable.We
show that these intervals mayoverlapfor some sets of mode
parameters, while in other cases there may existforbidden
gaps where no stable kinks exist. Then,we describe sce
narios of kink destructionwhen the force goes outside th
stability interval. When the stability intervals overlap, w
also studycollisions of kinks of different types.

Most of our results were obtained with the help of n
merical solution of the motion equation~3! with the substrate
potential ~2!, the interatomic interaction~4!, and periodic
boundary conditions. The simulation was typically pe
formed for the chain ofN52000 atoms with the help of th
Runge-Kutta method. A special attention has to be given
the initial configuration. In the case of the single kink, o
may start from the static SG kink and then slowly increa
the dc force~typically with a stepD f 50.001–0.005). At
each step, the steady state was found with the help of
procedure described in detail in our previous paper@10#. For
the double or triple kink, however, we have to start from t
moving kink configuration, because these kinks do not e
in the static state. In these cases, we started from the T
kink configuration and guessed the initial value of the
force leading to a stable kink motion. Then, the force
creased and decreased adiabatically until the stability inte
was found. Similarly, to find the kink shape for differe
values of the model parametersh, g, or b, we started from
the known configuration and then changed the correspon
parameter adiabatically.

The paper is organized as follows. The simulation res
are presented in Sec. II. Then, in Sec. III, we give a qual
tive explanation of kink behavior observed in simulatio
Finally, Sec. IV concludes the paper.

II. SIMULATION

In Fig. 1 we present the simulation data for the case
g51 andb51/p for three different values of the dampin
coefficient:h50.012, 0.024, and 0.05. Forh50.012, the 2p
kink is stable for forcesf , f 1r'0.29, the 4p kink exists for
forces within the intervalf 2l, f , f 2r , where f 2l'0.14 and
f 2r'0.33, and the 6p kink is stable for forcesf 3l, f , f 3r
with f 3l'0.42 andf 3r'0.67. In the case ofh50.024, we
obtainedf 1r'0.372 for the single kink,f 2l'0.253 andf 2r
'0.579 for the double kink, andf 3l'0.915 for the triple
kink ~the right boundary is not determined in this case!. Fi-
nally, for h50.05, we foundf 1r50.5067 for the single kink,
and f 2l50.4688 andf 2r50.8767 for the double kink. The
triple kink does not exist for this value of the damping co
ficient, because the kink cannot reach the necessary velo
for forces f ,1.

Next, we checked the system behavior for different valu
of the elastic constantg. In particular, for the parameter se
g50.5, b51/p, andh50.012, we found that the 2p kink
is stable forf , f 1r'0.27, the 4p kink is stable for forces
within the intervalf 2l, f , f 2r with f 2l'0.1 andf 2r'0.28,
and the 6p kink is stable for forcesf 3l, f , f 3r with f 3l
'0.305 andf 3r'0.52. Figure 2 shows these data as co
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FIG. 1. Dependence of the kink velocityvkink ~normalized on
the sound speedc5aAg) on the dc forcef for the single kink
~circles!, double kink ~diamonds!, and triple kink ~triangles! for
three values of the damping constant:h50.012 ~solid symbols!,
h50.024 ~open symbols!, and h50.05 ~open dotted symbols!.
Other parameters areb51/p, g51, and N52000. The dashed
horizontal lines show the velocity of the corresponding Toda soli
given by Eq.~6!. The solid vertical lines indicate the transition from
the steady kink motion to the totally running state with all the ato
moving with the velocity' f /h.

FIG. 2. Dependencevkink( f )/c for the single kink ~circles!,
double kink~diamonds!, and triple kink~triangles! for two values of
the elastic constant:g50.5 ~solid symbols! and g51 ~open sym-
bols!. Other parameters areb51/p and h50.012. The dashed
horizontal lines show the velocities of the corresponding Toda s
ton, while the solid vertical lines describe the transitions to
running state.
2-3
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BRAUN et al. PHYSICAL REVIEW E 67, 066602 ~2003!
pared to theg51 case. One can see that thevkink( f ) depen-
dencies for these two values of the elastic constant are
similar ~except the left boundary of the double kink as w
be discussed below in Sec. II B!.

When the dc force adiabatically changes within the sta
ity interval, thevkink( f ) dependence does not exhibit hyste
esis, the kink velocity is uniquely defined by the force. Ho
ever, the system exhibits a ‘‘trivial’’ hysteresis; if the syste
goes to the running state, for example, when the force
creases abovef pr , this state remains unchanged if the for
decreases back to lower values. In the same way, when
double kink splits into two single kinks during force decrea
ing process atf , f 2l , the two kinks continue to move bein
separated, and do not unite again into the double kink w
the force increases abovef 2l ~see Ustinovet al. @5#!.

The described results already allow us to make the
lowing conclusions:~1! driven supersonic kinks do exist;~2!
multiple kinks also exist in the driven system;~3! the mul-
tiple kinks cannot be static; when the kink velocity decrea
below a certain value, the multiple kink either splits in
separate single kinks, or the system goes to the running s
~4! the stability intervals of multiple kinks may overlap~e.g.,
f 1r. f 2l for the parameter values used in Fig. 1!; ~5! on the
other hand, there may exist forbidden gaps where no ki
are stable~e.g., f 2r, f 3l as in Fig. 1!; ~6! the comparison of
the results for different values of the damping constant s
gests that the main factor, which determines the kink sta
ity, is its velocity.

Below, we will check these conclusions in detail as w
as study the mechanisms of the kink decay.

A. Single kink

As was mentioned above, the supersonic kinks could
expected for the anharmonic FK model only. Indeed, in F
3, we present the simulation results for the single kink

FIG. 3. Velocity vkink /c vs the forcef for the single kink for
different values of the anharmonicity parameterb indicated in the
legend (g51 andh50.012).
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g51, h50.012, and different values of the anharmonic
parameterb. One can see that the kink can reach a sup
sonic velocityvkink.c before it becomes unstable atvkink
5vcrit only for a large enough value ofb ~e.g., whenb
>1/2p for the parameters used in Fig. 3!.

The critical velocity of the single kink extracted from th
data of Fig. 3 is shown by solid diamonds in Fig. 4. A
follows from Fig. 1, the critical velocity does not depen
essentially on the damping constanth. This allows us to use
the following algorithm proposed first in Ref.@9#. Starting
from the kink configuration at a fixed forcef and large
enough dampingh, we slowly decreaseh until the kink
becomes unstable and the system goes to the running
with all the atoms moving with approximately the same v
locity f /h. The simulation results obtained in this way a
presented in Fig. 4 for three different values of the elas
constantg (g50.3, 1, and 3!. One can see that superson
velocities are observed forb.0.1–0.2 only. At the same
time, the shape of the static kink does not change essent
from that of the classical FK model for these values ofb.
Thus, the existence of supersonic kink velocities could
considered as a solely dynamical effect, i.e., the anharmo
ity of the interatomic interaction leads to a change of t
character of kink’s motion from the SG-like to the Toda-lik
type.

When the driving force increases above the PN val
f PN, the kink begins to move and radiate phonons due to
discreteness effects. The radiation increases with kink ve
ity ~e.g., see the shape of the supersonic kink in Fig. 5!, and
finally this radiation leads to kink decay. Note that althou
the kink velocity essentially depends on the anharmonic
parameterb, the vkink( f ) dependence remains qualitative

FIG. 4. Critical velocityvcrit /c as a function of the anharmonic
ity parameterb for the single kink at the fixed forcef 50.5 and
three different values of the elastic constantg: g50.3 ~down tri-
angles!, g51 ~open diamonds!, and g53 ~triangles!. The critical
velocity for the constant dampingh50.012 extracted from Fig. 3 is
also shown by solid diamonds.
2-4
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DRIVEN KINKS IN THE ANHARMONIC FRENKEL- . . . PHYSICAL REVIEW E 67, 066602 ~2003!
the same for all values ofb shown in Fig. 3.
When the force exceeds the critical valuef 1r , the sce-

nario of kink’s decay for low values of the anharmonici
parameterb is similar to that of the classical FK mode
described in detail in Ref.@10# as shown in Fig. 6. The pri
mary kink generates new kink-antikink pairs. The newly c
ated antikinks also generate the kink-antikink pairs, and
collisions of these kinks and antikinks lead to the transit
to the running state.

The kinetics of the kink decay at large values of the a
harmonicityb is different. As one can see from Fig. 7, no
a new kink-antikink pair is created not just behind the p
mary kink, but at some distance~about ten lattice constants!
from the kink center. Recall that the main effect of anharm
nicity is the violation of the kink-antikink symmetry~e.g.,

FIG. 5. Shape of the single kink just prior to its decay forb
51/p, g51, andh50.012.

FIG. 6. Destruction of the single kink forb50.01, g51, h
50.012, andf 50.425. The initial configuration corresponds to t
steady kink motion atf 50.423. The transition to the running sta
begins just after the first kink-antikink collision.
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see Ref.@1#, and references therein!: when b.0, the anti-
kink moves more slowly than the kink. Atf 5 f 1r , the anti-
kink is unstable and generates new kink-antikink pairs. T
process finally results in the transition of the whole system
the running state.

B. Double kink

The force-velocity characteristics of the double kink f
different values of the anharmonicity parameterb are pre-
sented in Fig. 8. In these simulations, we first found t
steady-state moving kink configuration somewhere at
middle of the stability interval starting from the Toda kin
shape, and then adiabatically increased and decreased t
force. The kink shape for different values ofb, was also
obtained one from another by adiabatic change of this
rameter. One can see that at lowb, the double kink exists for
a very narrow interval of velocities. For example, forb
50.01, the double kink moves with almost a fixed veloc
vkink'0.85c. Recall that in the undamped discrete S
model without driving, the double kink can exist with a fixe
velocity vkink'0.82c only @6#. In the model under study, we
have to apply a dc force to compensate for energy loss du
the external damping. The instantaneous profile of the dou
kink for b50.01 is shown in Fig. 9. The kink shape
smooth at the left boundary of the stability interval@Fig.
9~a!#. Whenf increases, the kink begins to radiate in order
compensate for the increase of the force over thef 2l value.
The radiation increases withf @see Fig. 9b#, and finally atf
5 f 2r the double kink collapses.

When the anharmonicity parameterb increases, the inter
val of allowed kink’s velocities increases too. For examp

FIG. 7. Decay of the single kink forb51/p, g51, h
50.012, andf 50.295. The initial configuration corresponds to th
steady kink motion atf 50.29. A new kink-antikink pair is created
in the tail of the moving kink at a distance;10a from the primary
kink.
2-5
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BRAUN et al. PHYSICAL REVIEW E 67, 066602 ~2003!
for b51/p, the velocity of the double kink may take value
within the interval 1.77,vkink /c,2.16. The kink’s shape fo
this case is shown in Fig. 10. One can see that when
double kink moves with a velocity close to the Toda veloc
vToda'1.81c, its shape is smooth@Fig. 10~b!#, i.e., the kink
moves almost without radiation. But when the kink veloc
deviates from the Toda value, the double kink begins to
diate and finally decays.

In the example described above, where the dampinh
50.012 was used, the value of the Toda velocity was v
close to the left boundary of the stability interval. When t
damping is larger, e.g.,h50.05, the velocityvToda is at the
middle of the interval of the velocities allowed for the doub
kink, and now oscillations of the kink shape are very lar
both at the left and at the right boundaries as shown
Fig. 11.

The double kink can exist in the moving state only. Wh
the force is turned off, the double kink splits into two sep
rate single kinks as illustrated in Fig. 12. The double ki
leaves a single kink behind itself, which then quickly sto

FIG. 8. ~a! Velocity vkink /c vs f for the double kink for different
values of the anharmonicity parameterb as indicated in the legend
(g51 andh50.012). The dash horizontal lines show the veloc
of the corresponding Toda soliton. Panel~b! shows thevkink( f )
dependencies at low forces. The jumps correspond to splitting o
double kink into two single kinks separated by one, two, etc., lat
constants.
06660
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while the ahead single kink continues to move over a d
tance;vToda/h.

A similar behavior is observed when the force decrea
adiabatically. Atf 5 f 2l the double kink splits into two single
kinks separated by one lattice constant, and the velocity ju
plike decreases@see Fig. 8~b!#. With further decrease off, the
distance between the single kinks jumplike increases~each
time on one lattice constant! and simultaneously the velocit
decreases until both kinks stop. The same scenario was
served by Ustinovet al. @5# in the classical FK model. In the
anharmonic model, however, such a scenario is observed
low values of the anharmonicity parameter only~e.g., forb
,0.3 in the case ofg51). For a largeb, for example, for
the case ofb51/p shown in Fig. 13, the scenario is differ
ent. The double kink becomes unstable and emits antikin
while newly created kinks move together with the prima
kink ~creating a ‘‘traffic jam’’ discussed in detail in Ref.@9#!.
The total velocity of the system grows approximately li
early with time, and finally the whole system goes to t
running state.

The scenarios described above are typical for the k
decay. However, for some sets of the model parameters
also observed a more complicated kinetics of the decay.
example, in the case of a smaller value of the elastic c
stant,g50.5, the double kink transforms into the triple kin
and the single antikink during the force decreasing proces
f 5 f 2l ~see Fig. 2!. Then, with further decrease of the forc
at f 50.01, the triple kink annihilates with the single antikin
so that the system leaves with two single kinks. One m
example of a nontrivial scenario of the kink decay will b
described below for the case of the triple kink.

Finally, let us describe the mechanism of kink decay wh
the force adiabatically increases above the stability inter

e
e

FIG. 9. Shape of the double kink forb50.01, h50.012, and
g51 at ~a! the left boundary (f 50.04, vkink /c50.843) and~b! the
right boundary (f 50.27, vkink /c50.914).
2-6
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At low anharmonicity parameterb, the scenario is similar to
that of the single kink~e.g., see Fig. 14 for the case ofb
50.01 and compare it with Fig. 6!. The primary kink emits
new kink-antikink pairs, then the antikinks also emit ne
kink-antikink pairs, and the collisions of kinks with antikink
result in the transition to the running state. At large values
the anharmonicity parameterb, the scenario, however, i
different. Now a new kink-antikink pair is created far awa
from the primary kink, e.g., at a distance;100a as shown in
Fig. 15. Then, the newly created kink generates new ki
antikink pairs, and this finally results in the transition to t
running state. Note that close to the instability threshold,
kink’s shape is irregular@see Fig. 10~c!#. Note also that at
higher values of the damping constant the scenarios are s
lar, although the distance, where the new kink-antikink p
is created, is now shorter~e.g.,;10a for h50.05).

C. Triple kink

Properties of the triple kink are in many aspects similar
those of the double kink. Thevkink( f ) dependencies for the

FIG. 10. Shape of the double kink forb51/p, h50.012, and
g51 for different forces: ~a! at the left boundary (f 50.14,
vkink /c51.771), ~b! f 50.15 whenvkink /c51.813'vToda/c, and
~c! at the right boundary (f 50.33, vkink /c52.156).
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triple kink for different values of the anharmonicityb are
summarized in Fig. 16. In the limitb→0, the triple kink
exists only for an approximately constant velocity in agre
ment with the Champneys and Kivshar result@6# for the un-
damped undriven classical FK model. For example, forb
50.01, the velocity of the triple kink lies within the ver
narrow interval 0.9,vkink /c,0.94. At larger values of the
anharmonicity, parameterb.0.1, the kink velocity changes
with force, but remains within a narrow interval around t
Toda velocity~6!.

FIG. 11. Shape of the double kink forb51/p, g51, andh
50.05 for different values of the force:~a! close to the left bound-
ary, ~b! when the kink velocity is close to the Toda velocity, and~c!
close to the right boundary.

FIG. 12. Free evolution of the double kink for the paramet
g51, b51/p, andh50.012.
2-7
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The shape of the triple kink is shown in Fig. 17 for
nearly harmonic model,b50.01, and in Fig. 18 for a large
value of the anharmonicity parameterb51/p. In the former
case, the radiation is low at the left boundaryf 5 f 3l and

FIG. 13. Decay of the double kink for theb51/p case when the
force decreases adiabatically (f 50.13, g51, and h50.012; the
initial configuration corresponds to the steady kink motion af
50.14).

FIG. 14. Decay of the double kink when the force adiabatica
increases above the stability interval for the case of small anhar
nicity parameterb50.01 (f 50.275,g51, andh50.012; the ini-
tial configuration corresponds to the steady kink motion af
50.273).
06660
increases with force growing until the kink becomes unsta
and decays atf 5 f 3r . In the case ofb51/p, the radiation is
low when the kink velocity is at the middle of the stabilit
interval, and increases when the kink velocity deviates fr
the Toda value to lower or higher values. Again, note th
close to the boundaries of the stability interval, the oscil
tions in the kink’s tail are irregular.

Analogously to the double kink, the triple kink can exi
in the moving state only. When the force is turned off, t

o-

FIG. 15. The same as Fig. 14, but for large anharmonicity
rameterb51/p ( f 50.34, the initial configuration corresponds
the steady kink motion atf 50.33).

FIG. 16. vkink( f )/c for the triple kink for different values of the
anharmonicity parameterb as shown in the legend (g51 andh
50.012). The dashed horizontal lines show the velocities of
corresponding Toda soliton.
2-8
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triple kink splits into single kinks leaving them behind itse
When the force is decreased adiabatically, the triple k
becomes unstable atf 5 f 3l . At low anharmonicity param-
eter, e.g.,b,0.11 for g51, the triple kink leaves a single
kink behind itself; the ‘‘ahead’’ double kink also soon spli
into two single kinks separated by one lattice constant,
the further scenario is similar to that described above for
case of the double kink. However, in the highly anharmo

FIG. 17. Shape of the triple kink forb50.01 for three values of
the dc force:~a! close to the left boundary,~b! at the middle of the
stability interval, and~c! close to the right boundary (g51 andh
50.012).

FIG. 18. Shape of the triple kink forb51/p for three values of
the force:~a! close to the left boundary,~b! when the kink velocity
is close to the Toda velocity, and~c! close to the right boundary
(g51 andh50.012).
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model, e.g., whenb.0.11 for theg51 case, the system
goes to the running state according to the scenario show
Fig. 19. Now new kink-antikink pairs are generated in t
kink’s tail far away from the primary moving kink~at a
distance*100a–200a for the parameters used in Fig. 19!,
and this stimulates the transition of the whole system to
running state.

An interesting scenario was observed for the ‘‘interme
ate’’ b50.11 case. When the force is decreased adiabatic
at f 50.095 the triple kink splits into a double kink (2k) and
a single kink. The single kink almost immediately genera
in its tail a new kink-antikink pair. The newly created kin
and the old single kink are coupled together into a 2k1 kink
~two single kinks separated by one lattice constant!, so that
there are two double kinks (2k and 2k1) and one antikink in
the system at this stage of system evolution. The 2k1 kink
moves slightly slower than the 2k kink. All collisions be-
tween these kinks are ‘‘elastic.’’ With further decrease of t
force, the antikink and the double kink annihilate durin
their collision thus creating a single kink, so that the syst
has one single kink and one 2k1 kink in the result. Then, the
2k1 kink overtakes the single kink, these join together a
move as one complex. With further decrease off, the dis-
tance between single kinks in the 2k1 kink begins to in-
crease, and finally all three single kinks stop.

Finally, when the force is increased above the stabi
interval, the triple kink collapses and stimulates the transit
of the whole system to the running state as well. The kine
of this transition is slightly different at low and large value
of the anharmonicity parameterb. For example, atb
50.01, the triple kink generates kink-antikink pairs just b
hind itself. The antikinks move to the left~against the force!,

FIG. 19. Decay of the triple kink in the anharmonic model f
adiabatically decreasing force (b51/p, f 50.415, g51, and h
50.012; the initial configuration corresponds to the steady k
motion at f 50.42).
2-9
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while the kinks join together increasing the topologic
charge of the primary kink. The moving antikinks genera
kink-antikink pairs as well, and collisions of newly create
kinks and antikinks result in the transition to the runni
state. This scenario is similar to that for the single kink a
double kink described above. On the other hand, at a h
anharmonicity of the interaction, e.g., for the case ofb
51/p shown in Fig. 20, the scenario of the transition r
minds us that for the case the force decreasing process~com-
pare Figs. 20 and 19!. Now new kink-antikink pairs are gen
erated far away from the primary kink~at a distance
*200a), and this stimulates the transition of the whole sy
tem to the running state.

D. Kink collisions

In the preceding sections, we considered the cases w
there was only one kink in the system. Now let us discuss
evolution of the system with several kinks. If all kinks are
the same topological charge, these all move with the sa
velocity in the steady state and, therefore, these cannot
lide.

However, due to overlapping of the stability intervals, t
system may contain kinks of different topological charg
simultaneously, for example, a single kink and a double ki
Because the single and double kinks are characterized
different velocities at a given value of the dc force, they m
collide after some time. The result of such a collision d
pends on the driving forcef and on the anharmonicity pa
rameterb. For example, in the case of nearly harmonic
teraction between the atoms,b50.01, the collision results in
the formation of a triple kink as shown in Fig. 21. Becau

FIG. 20. Scenario of destruction of the triple kink in the anh
monic model for the force increasing process (b51/p, f 50.675,
g51, andh50.012; the initial configuration corresponds to th
steady kink motion atf 50.67).
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the triple kink is stable at the given value of the force,
moves without further changes.

Moreover, when the system contains one double kink a
several single kinks, the double kink, having a higher vel
ity, will overtake the single kinks one by one, increasing
own topological charge. However, the kink topologic
chargep cannot grow infinitely—whenp reaches some criti-
cal value, the kink becomes unstable. For example, Fig.
shows the system configuration when the double kink
ready overtook three single kinks and reached the topol
cal chargep55. After that thep55 kink becomes unstable
it begins to emit antikinks, and the next collision with
single kink results in the transition to the running state
shown in Fig. 23.

In the highly anharmonic model, the transition to the ru
ning state begins much earlier. For example, in the cas
b51/p, already the first collision of the double and sing
kinks results in the transition to the running state as dem

- FIG. 21. Collision of the double kink and the single kink in th
nearly harmonic model (b50.01, f 50.15, g51, andh50.012).

FIG. 22. The system configuration after creation of thep55
kink (b50.01, f 50.15, g51, andh50.012).
2-10
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strated in Fig. 24. In this case, the stability intervals of t
double and triple kinks do not overlap, so that the triple ki
is unstable at this value of the force.

III. DISCUSSION

As we mentioned already in Sec. II, the stability of t
multiple kink in the anharmonic FK model is determine

FIG. 23. Collision of thep55 kink with the single kink (b
50.01, f 50.15, g51, andh50.012).

FIG. 24. Collision of the double kink and the single kink in th
highly anharmonic model (b51/p, f 50.25, g51, and h
50.012).
06660
e
mainly by its velocity. Indeed, if we replot the data from Fi
1 in the coordinatesvkink /c versusf /h ~see Fig. 25!, then the
‘‘scaled’’ force-velocity dependencies for different values
the damping constanth almost coincide, especially at left
hand parts of the stability intervals.

If the value of the driving forcef is kept fixed, then the
kink velocity vkink monotonically increases with the anha
monicity parameterb as shown in Fig. 26. When the anha
monicity exceeds a certain value, e.g.,b.0.1 for theg51
case,vkink becomes close to the Toda velocityvToda. In the
highly anharmonic FK model, the multiple kinks can ex

FIG. 25. Dependencevkink /c vs f /h for the single, double, and
triple kinks for three different values of the damping constant:h
50.012, 0.024, and 0.05 (b51/p andg51).

FIG. 26. Dependence of the veloctiesvkink /c of the double and
triple kinks on the anharmonicity parameterb at a fixed value of
the dc force~shown in the legend! for g51 andh50.012.
2-11
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only with supersonic velocities close to those of the cor
sponding Toda soliton.

Thus, for a large enough degree of the anharmonicity
the interatomic interaction, e.g.,b.0.1 forg51, the behav-
ior of the multiple kinks should remind us that of the To
soliton. The multiple kink is stable for forces within the in
terval f pl, f , f pr , and its velocity monotonically increase
with f within a nonzero intervalvp, min,vkink,vp, max. The
critical values of the kink velocity as functions of the anha
monicity parameterb are plotted in Fig. 27. One can see th
the width of the interval of the allowed kink’s velocitie
increases withb, and the Toda velocity lies inside the st
bility interval for b.0.1. When the kink velocity is close t
vToda, it moves almost without radiation. But when the kin
velocity deviates from the Toda one, it begins to radi
phonons into its own tail and finally collapses.

The whole dependencevkink( f ) for the multiple kink may,
in principle, be found from the force balancing arguments
the steady state, the driving force must be compensate
the total frictional force,f 5mpheffvkink , where mp is the
effective kink’s mass andheff5h1h int is the total damping
experienced by the kink, which consists of the exter
damping h and an additional dampingh int emerging due
to radiation of phonons. The massmp can be calculated
from the kink’s shape through the integral~e.g., see Ref.
@16# and also Ref. @1#, and references therein! mp

5a21*2`
1`dz@u8(z)#2. The kink’s shape can be found, fo

example, with the help of the variational method develop
in Ref. @11# as a proper combination of the SG kink shape~1!
and the Toda soliton shape~5! with some fitting parameters
Even if we ignore the radiational lossesh int , the described
approach leads to a qualitative correct dependencevkink( f )
@11#.

However, in order to get a quantitative agreement with
simulation results, one should calculate analytically

FIG. 27. Critical velocitiesvcrit /vToda of the double and triple
kinks as functions of the anharmonicity parameterb for g51 and
h50.012.
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losses due to phonon radiation, which is the most diffic
problem @17#. Although there are methods to estimateh int
~e.g., see Ref.@1#, and references therein!, these are too com
plicated and the achieved accuracy is typically not too sa
factory. Besides, such an approach cannot predict the st
ity intervals of multiple kinks. As was shown in Ref.@10#,
the instability of the fast kink is in fact a delicate problem
the kink becomes unstable due to the excitation of an inte
kink’s localized mode in its tail. Thus, a direct simulation
the dependencevkink( f ) still remains a more straightforwar
approach to the problem.

IV. CONCLUSION

Thus, we have presented the detailed numerical stud
multiple kinks in the driven anharmonic FK model. W
showed that multiple kinks with a topological chargep>2
do exist in thediscretemodel in accordance with the resul
of the previous works. These kinks cannot be static, they
stable in the moving state only.

At low anharmonicity of the interatomic interaction, whe
the dimensionless anharmonicity parameterba is lower than
0.5, the multiple kinks move with a subsonic velocityvpm .
The value of this velocity is in agreement with that calc
lated analytically in Ref.@6#. The kink velocity is almost
independent of the external drivingf. The interval of forces,
where the multiple kink is stable, is determined byf pl
'mphvpm from the left-hand side~the force must compen
sate energy loss due to the external damping!, while from the
right-hand side the kink stability is destroyed due to incre
ing of phonon radiation, which emerges in order to comp
sate the energy}( f 2 f pl) pumped into the system by th
driving. When the force is outside the stability interval, t
multiple kink decays. At low forces,f , f pl , the multiple
kink typically splits into several kinks with lower topologica
charges. This process proceeds through intermediate st
where separation between the child kinks increases by st
At high forces,f . f pr , the multiple kink becomes unstabl
and emits kink-antikink pairs behind itself. The newly cr
ated antikinks move against the force with approximately
same velocity due to kink-antikink symmetry and emit kin
antikink pairs as well. Then, collisions of kinks and antikin
lead to the transition of the whole system to the runn
state. Note that this scenario is approximately the same
the single (p51) kink as well@10#.

In a highly anharmonic FK model, whenba.0.5, the
multiple kinks are supersonic, and their properties are cl
to those of the Toda soliton. Now a range of allowed kink
velocities is much larger than in the classical FK model, a
the value ofvkink monotonically increases withf. When the
kink velocity is close to that of the corresponding Toda so
ton, i.e., at f 'mphvToda, the multiple kink moves almos
without radiation. But when the kink velocity deviates fro
this value~either to lower or to higher values!, the kink be-
gins to radiate phonons and finally becomes unstable.
scenario of kink’s destruction is different from that of th
classical FK model. Now the kink’s tail becomes irregula
and new kink-antikink pairs are generated far away from
primary kink. The creation of these kink-antikink pairs lea
2-12
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DRIVEN KINKS IN THE ANHARMONIC FRENKEL- . . . PHYSICAL REVIEW E 67, 066602 ~2003!
to the transition of the whole system to the running state
low damping, e.g., ath50.012, the new kink-antikink pairs
are emerged at a distance of about ten lattice constants
the primary kink in the case of the 2p kink, at about 100
lattice constants for the double kink, and at.200a in the
case of the triple kink. When the damping constant is larg
the kink’s tail is shorter and these distances are smaller

It is important to note that multiple kinks with a topolog
cal chargep>2 may only be observed in a system with
low enough dampingh, because the driven kink has to rea
a high velocityvkink;vToda at forcesf ,1, i.e., before that
the minima of the substrate potential disappear. Note a
that in the simulation of the driven anharmonic FK mod
we did not observe the hierarchy of multiple kink states p
dicted in Refs.@14,15#, probably, because we always start
from the monotonic~either SG or Toda! kink shape.

Typically a system may contain either one multiple ki
or several kinks of the same topological chargep ~a train of
multikinks!, which all move with the same velocity. Whe
the kinks of different topological charges are present in
system simultaneously~this is possible if their stability inter-
vals overlap!, these kinks will move with different velocitie
and must collide after some time. Such a collision is ty
cally destructive and leads to the transition of the whole s
tem to the running state. For example, even when the si
and double kinks are united into a triple kink after the co
sion as was observed in the case ofb50.01 ~see Fig. 21!,
next collisions of the triple kink~whose velocity is the larg-
est one in the system! with other kinks will finally destroy
the steady state.

The effect described above leads to an interesting con
sion that at a nonzero temperatureT, the system of single
kinks should be unstable at forcesf . f 2l even if the 2p
kinks are still stable at the given force,f , f 1r . Indeed, at
T.0 the kink’s velocities fluctuate, so that some of the kin
may collide and form a double kink. Besides, double kin
may also be created due to thermal fluctuations. Then,
double kink will move faster than other single kinks. Ther
fore, it will overtake the single kinks one by one, final
destroying the steady state. However, the described sce
operates in theinfinite system only. In a finite-length chain
s.
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where the probability of thermal excitation of new kink
antikink pairs is negligible at low enough temperature,
results of the present work should be valid as has been m
tioned in Ref.@11#. Note that at lower forces,f , f 2l , the
single kinks in the anharmonic FK model should come clo
to each other creating a ‘‘traffic jam’’ state@9#.

Note also that while the 2p kinks can be smoothly accel
erated up to supersonic velocities starting from the st
configuration, the multiple kinks withp>2 have to be
launched into the system artificially with already corre
shape and velocity, e.g., from a free end of the chain, beca
these cannot exist in the static state.

The supersonic and multiple kinks discussed in
present paper may have applications in the different phys
systems already mentioned in the Introduction. In particu
the instability of fast kinks is responsible for the sharp tra
sition from the low-mobility motion to the high-mobility
sliding state and the hysteresis in driven systems. Altho
we do not know experimental situations, where these ty
of excitations were directly observed, molecular dynam
~MD! simulation of dislocation dynamics in two-dimension
~2D! systems exhibits some features discussed in the pre
work. In particular, Gumbsch and Gao@18# observed a su-
personic propagation of dislocations. Also, Pougetet al. @19#
and recently Gornostyrevet al. @20# have observed in MD
simulation of the 2D FK model the nucleation of kink
antikink pairs in the tail of the moving dislocation under th
applied ~strong enough! stress. It was noted that such a
effect may lead to a nontrivial temperature dependence
yield stress in metals and alloys with a sufficiently high P
relief.

ACKNOWLEDGMENTS

Discussions with F. Marchesoni and M. Peyrard are gra
fully acknowledged. The work of O.B. was supported in p
by NATO Grant No. HTECH.LG 971372 and INTAS Gran
No. 97-31061, and that of H.Z., B.H., and J.T. by grants fro
the Hong Kong Research Grants Council~RGC! and the
Hong Kong Baptist University Faculty Research Gra
~FRG!.
E

d

@1# O.M. Braun and Yu.S. Kivshar, Phys. Rep.306, 1 ~1998!.
@2# M. Peyrard and M.D. Kruskal, Physica D14, 88 ~1984!.
@3# A.V. Savin, Y. Zolotaryuk, and J.C. Eilbeck, Physica D138,

267 ~2000!.
@4# B.A. Malomed, Phys. Rev. B41, 2616~1990!.
@5# A.V. Ustinov, B.A. Malomed, and S. Sakai, Phys. Rev. B57,

11 691~1998!.
@6# A. Champneys and Yu.S. Kivshar, Phys. Rev. E61, 2551

~2000!.
@7# O.M. Braun, T. Dauxois, M.V. Paliy, and M. Peyrard, Phy

Rev. Lett.78, 1295~1997!; Phys. Rev. E55, 3598~1997!; M.
Paliy, O. Braun, T. Dauxois, and B. Hu,ibid. 56, 4025~1997!.

@8# O.M. Braun, A.R. Bishop, and J. Ro¨der, Phys. Rev. Lett.79,
3692 ~1997!.
@9# O.M. Braun, B. Hu, A. Filippov, and A. Zeltser, Phys. Rev.
58, 1311~1998!.

@10# O.M. Braun, B. Hu, and A. Zeltser, Phys. Rev. E62, 4235
~2000!.

@11# O.M. Braun, Phys. Rev. E62, 7315~2000!.
@12# M. Toda, J. Phys. Soc. Jpn.22, 431 ~1967!; 23, 501 ~1967!;

Theory of Nonlinear Lattices~Springer-Verlag, Berlin, 1981!.
@13# A.R. Bishop, D.K. Campbell, P.S. Lomdahl, B. Horovitz, an

S.R. Phillpot, Synth. Met.9, 223 ~1984!.
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