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Driven kinks in the anharmonic Frenkel-Kontorova model
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Multiple and supersonic topological excitatioflsinks) driven by an external dc force in the Frenkel-
Kontorova model(a chain of atoms subjected to a periodic substrate poteniitd the exponential interatomic
interaction are studied with the help of numerical simulation. The simulation results are interpreted in terms of
dynamics of two limiting cases, the exactly integrable sine-Gordon equation and the Toda chain. The stability
of driven kinks and scenarios of their destruction are described for a wide range of model parameters.
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[. INTRODUCTION ergy during motion. Therefore, to keep the kink moving, one
has to apply an external dc foréeso that the motion equa-
Nonequilibrium dynamics of simple systems of interact-tion takes the following form:
ing particles subjected to an external periodic potential,

damping, and driven by an external force, is a very rich and Uy (t) + U, () +sinu — V' (U, — U, +a)
interesting theoretical problem, as well as having many im-
portant applications in such areas as mass transport, conduc- +V'(u—-u_;ta)=f, ©)

tivity, tribology, Josephson transmission lines, etc. In these

systems the mass or charge transport is carried out by topevhere the dot stands for the time derivativeis the coeffi-
logical excitations, the so-called kinks that describe a locatient of the external viscous damping, which models the en-
compression(or expansion in the case of antikinkf the  ergy exchange between the chain and the substrate, and the
chain. A classical example of these type of systems is thénteraction between the atomég(x), is assumed to be purely
exactly integrable sine-Gordo(SG) equation, where the harmonic in the classical Frenkel-Kontorova modé(x)

kink has the following form: =1g(x—a)>
The SG kinks of the same topological charge repel one
u(t)=4 arctan expT (la—uvyt)/d]. (1)  another. Therefore, the steady-state solution of the driven SG

system should correspond to either a single moving kin&
27 kink with the topological chargee=1) or a train of
equidistant kinkgthe so-called cnoidal wayeln thediscrete
SG model, on the contrargultiple kinks with the topologi-
cal chargep=2 may also exist. This fact was first observed
1 by Peyrard and KruskdR] in numerical simulation. It was
VsufX) = 5 e[1—cod2mx/a)] (2> found that a ballistic motion of # and 6 kinks in the
classical FK model is possible, if the elastic constgrex-

. . ) ceeds some critical valug, (whereg,<1), and the velocity
of the heighte =2 and perioca=2 (throughout this paper o these multiple kinks has to have a certain value that in-

we use dimensionless system of units and assume that thesaqes withy, Later, the ballistic motion of the=2 kink
atomic massmy=1), v IS the kink velocity, d a5 studied numerically by Savit al. [3] with the help of
=(a\g) V1-vjy/c® is its width, c=ayg is the sound the pseudospectral method, where a hierarchy of the double
speed in the chain of atoms harmonically interacting with thecnk states characterized by different distances between two
elastic constang, and the signsr correspond to kink and  single kinks was found. Each of these bound states is dy-
antikink configurations, respectively. The SG kink may benamically stable for a certaitpreferred value of the veloc-
considered as a quasiparticle with the effective masgy given by a set of model parameters.
M(vini) = (2/7\9)/ 1—viin/c?,  which moves freely A qualitative explanation of existence of multiple kinks
through the system. In the discrete SG modéle well-  was given by Malome@4] (see also a more recent paper by
known Frenkel-Kontorova model, e.g., see Réf, and ref-  Ustinovet al.[5]). Due to the discreteness effects, the “for-
erences therejnhowever, the motion of the2 kink is sub-  ward” 27 kink of the multikink configuration emits a strong
jected to an effective Peierls-Nabaff@N) periodic potential radiation behind itself, which helps the kinks immediately
and, thus, the kink radiates phonon and loses its kinetic erfollowing it to overcome the PN barriers. Thus, the multiple
kinks are stable due to “compensation” of the waves emitted
by single kinks when these waves happen to be out-of-phase
*Electronic address: obraun@iop.kiev.ua and suppress each other. A more rigorous explanation was

Here,u, describes the shift of theh atom from a minimum
of the substrate potential
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given later by Champneys and Kivshd]. Due to the dis- Eq. (5) is coupled with the soliton velocity 1,4, by the re-
creteness effects, the motion equation of the FK model in thgationship v 1oq,= csinh(uag)/(ua,), and c=ag\/g/m, is
quasicontinuum approximation reduces to a perturbed SGgain the sound velocity in the chain. The Toda soliton is a
equation with a fourth-order dispersion term. Without thepne-parameter dynamical soliton localized within a region
driving and dampingf=#»=0, the propagating  kink so- ~ — =1 |t is characterized by the effective mas¥uvoq,)
lution does not exist at all; the single kink is always pinned=2,(y,,4)/8 and describes a local compression of the
by the PN potential. At the same time, the motion equationthain characterized by a jump of displacemeént=u, .

has four analytical solutions for the double-kink boundary_, — —2uay/B, which continuously depends on the
condition. One of these solutions corresponds to thekihk  ggjiton velocity. Note that the dynamical soliton must move
propagating with the fixed velocity, (v,/c=12/3~0.82  with the supersonidfaster-than-soundvelocity vegs>C,

for g=1), while three other solutions describe “excited” pecause in the limib 44— C the soliton width tends to in-
states of the double kink and are characterized by lower vefinity and the soliton disappears. Note also that the Toda
locities. Besides, there also exist solutions with hlgher tOpOSoﬁton cannot be driven by a dc force. Because the system is

Iogical.charges. o . spatially homogeneous, the external forfcavill induce a
Motion of the double kink in thelrivenunderdamped FK  grift of all chain’s atoms with the same velocity= /7.
model was studied numerically by Ustin@t al. [5]. They If the Toda chain is disturbed, e.g., by the substrate po-

observed four “bunched” states of two single kinks, which tentjal (2), the system becomes nonintegrable and the soliton
differ by the number of the oscillations trapped between theshould disappear because of phonon radiation. In the present
two 27 kinks. Such “resonant” states exist for certain inter- paper, we will discuss the commensurate situation on|y,
vals of the driving fOfCE, which overlap. At the lower bound- when aO:azzﬂ-. In the presence of the external substrate
ary of these intervals, the velocity of the double kink is verypotential due to boundary conditions at infinity, the “jump”
close to that calculated by Champneys and Kiv§barThe Ay must be equal tpa with p being an integer. Thus, one
driven FK model was also studied in a series of papers bynay expect the existence of multiple solitons with a topo-
Braunet al. [7-10], where the existence of multiple kinks |ogical chargep=1, if the width of the Toda soliton matches

was observed as well. In the SG model, however, the topayith the period of the substrate potential. For fhkink, we
logical excitations are always subsonic, the kink cannopptain 2u.=pg or

propagate with a velocity ;. larger than the sound speed

because of Lorentz contraction of kink’s width. Moreover, in Utoda SINN(7BP)

the discrete FK chain, the kink decays even earlier, at a ve- c  wBp ©
locity v¢iw<<c, because of a strong radiation of phonons in

the kink’s tail[10]. For example, for the anharmonicity parameger 1/7, we

However, in the generalized FK model, where the inter-have v 14,/c=(sinhp)/p~1.18 for the 27 kink (a single
atomic interaction isanharmonic the kink may reach a su- kink, p=1), v o4/~ 1.81 for the 4r kink (the double kink,
personic velocity i, >c (e.g., see Refd8,11], and refer- p=2), andv,q,/c~3.34 for the Gr kink (the triple kink,
ences therein A limiting case of the discrete anharmonic p=3), correspondingly. Thus, the supersonic and multiple
model is the exactly integrable Toda ch4?], where the kinks may be treated as Toda solitons “disturbed” by the
substrate potential is totally absent, while the adjacent atomgxternal periodic potential.
interact via exponential law Supersonic topological solitons, which move almost with-

out radiation, were first observed by Bishepal. [13] in
a molecular dynamics study of polyacetylene. Then, the super-
B sonic kinks were studied by Saviti4] in the framework of
the ¢* model with anharmonic interatomic interaction. Later,
ExpandingV(x) into Taylor series for smallX—ay), we  Zolotaryuket al.[15] have studied numerically with the help
obtain V(x)~alB+3(aB)(x—ap)[1—35 B(x—ag)]l.  of the pseudospectral method the ballistic supersonic kinks
Thus, at a small deviation of the interatomic distances fronof different topological charges in the framework of the FK
the equilibrium distancey, |x—ag|<p !, the Toda poten- model with exponential interatomic interaction. It was found
tial is close to the harmonic potential with the elastic con-that the multiple kink exhibits a hierarchy of “excited”
stantg=aB. For the higher deviations, a measure of non-states,n=1,2, ... N Which may be considered as
linearity of interaction is determined by the anharmonicity acoustic Toda solitons bounded together, when the sum of
parameterg, and in the limit3—o the Toda potential re- their amplitudes coincides with the period of the substrate
duces to the hard-core potential. The Toda chain allows thpotential. All these solutions were found to be dynamically
existence of adynamicalsoliton, which has the following stable and propagate with their own preferred velocities.
form: The goal of the present work is a detailed study of kink
propagation in theanharmonic drivenFK model. Indeed,
U —Eln 1+exp2ul[(I—1)ag—vroad 1} (5 now the Toda soliton may be driven by the external force,
'_3 1+exd2u(lag—vrogd)] ’ because the atoms far away from the soliton are pinned at the
minima of V,{X), provided the force is not too largé|
where u; describes now the displacement of thte atom  <e/2=1. The driven kinks were already considered in our
from the equilibrium positiorx,g=1ay. The parameteg in previous paper§7—11]. Now, however, we present a much

V(x)= —exd —B(X—ap) |+ a(x—ay). (4)
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more detailed study of the problem for a wide range of 4.0 T — — e e e g
model parameters. In particulase determine the intervals C /
of forces and kink's velocities where the kinks are stalile. 35 F 1 % ____________
show that these intervals mayerlapfor some sets of model : 3
parameters, while in other cases there may exigiidden 30F —4— triple ]
gaps where no stable kinks exist. Theme describe sce- : —¢—double ]
narios of kink destructiowhen the force goes outside the 25F —e—single -
stability interval. When the stability intervals overlap, we © : ]
also studycollisions of kinks of different types. 3 20 .
Most of our results were obtained with the help of nu- & F ]
merical solution of the motion equati@8) with the substrate L5 3
potential (2), the interatomic interactiori4), and periodic : ]
boundary conditions. The simulation was typically per- 105 n=0.012 —e— 7
formed for the chain oN=2000 atoms with the help of the H B=l/n g=1 n=0.024 —o— 1
Runge-Kutta method. A special attention has to be given to 0.5 1=0.050 —o—
the initial configuration. In the case of the single kink, one 0.0 Bua T
may start from the static SG kink and then slowly increase 00 01 02 03 04 05 06 07 08 09 10
the dc force(typically with a stepAf=0.001-0.005). At
each step, the steady state was found with the help of the force

procedure desc_ribed.in detail in our previous papé}. For FIG. 1. Dependence of the kink velociby,, (normalized on
the double or triple kink, however, we have to start from th_ethe sound speed=a\/g) on the dc forcef for the single kink

moving kink configuration, because these kinks do not existgircleg, double kink (diamonds, and triple kink (triangles for
in the static state. In these cases, we started from the ToGgree values of the damping constant=0.012 (solid symbols,
kink configuration and guessed the initial value of the dc,]=0.024 (open symbols and 7=0.05 (open dotted symbols
force leading to a stable kink motion. Then, the force in-other parameters arg=1/m, g=1, and N=2000. The dashed
creased and decreased adiabatically until the stability intervalorizontal lines show the velocity of the corresponding Toda soliton
was found. Similarly, to find the kink shape for different given by Eq.(6). The solid vertical lines indicate the transition from
values of the model parameters g, or B, we started from  the steady kink motion to the totally running state with all the atoms
the known configuration and then changed the correspondingoving with the velocity= f/ 7.
parameter adiabatically.

The paper is organized as follows. The simulation results
are presented in Sec. Il. Then, in Sec. Ill, we give a qualita-
tive explanation of kink behavior observed in simulation.

Finally, Sec. IV concludes the paper. 4.0 e T e
II. SIMULATION 35F il E
In Fig. 1 we present the simulation data for the case of 30 F ]
g=1 andB=1/7 for three different values of the damping - ]
coefficient:7=0.012, 0.024, and 0.05. Fer=0.012, the 2r 25 F 3
kink is stable for force$ <f,,~0.29, the 4r kink exists for 2 C —aA—triple ]
forces within the intervaf, <f<f,,, wheref,~0.14 and E 20 F —e—double
f,,=~0.33, and the & kink is stable for forced 5 <f<f,, C —e—single ]
with f4~0.42 andf;,~0.67. In the case of)=0.024, we LsE” | - Toda 3
obtainedf,~0.372 for the single kinkf,~0.253 andf,, C ]
~0.579 for the double kink, andl;;=~0.915 for the triple Lo H 3
kink (the right boundary is not determined in this cadé- g g=0.5—e— 1
nally, for »=0.05, we found ;,=0.5067 for the single kink, 0.5 g=1.0—o— 3
and f,,=0.4688 andf,,=0.8767 for the double kink. The ’ ]
triple kink does not exist for this value of the damping coef- 0.0 bl e bssdsed g
ficient, because the kink cannot reach the necessary velocit 00 01 02 03 04 05 06 07
for forcesf<1. force

Next, we checked the system behavior for different values

of the elastic constarg. In particular, for the parameter set ~ FIG. 2. Dependencey(f)/c for the single kink (circles),
g=0.5, B=1/m, and 7=0.012, we found that the 2 kink double kink(diamond$, and triple kink(triangles for two values of

is stable forf<f,,~0.27, the 4r kink is stable for forces e elastic constang=0.5 (solid symbols andg=1 (open sym-

within the intervalf, < f<f,, with f,~0.1 andf,~0.28, bolg). Other parameters ar8=1/7 and »=0.012. The dashed

S . horizontal lines show the velocities of the corresponding Toda soli-
and the @r kink is stable for forcesfs<f<fs with fg ton, while the solid vertical lines describe the transitions to the

~0.305 andf;,~0.52. Figure 2 shows these data as COM-nning state.
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¥ 1 15 F .
s —o—p=1/n=0.318
05 g o p=026 7] [ 1
v p=021 [
% B=1/22=0.159 L
A B=0.11 T Ny A |
o p006 ] 1.0 [--2
® p=0.01 i
| -
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FIG. 3. Velocity v, /c vs the forcef for the single kink for

different values of the anharmonicity paramegeindicated in the FIG. 4. Critical velocityv . /c as a function of the anharmonic-
legend g=1 and 7=0.012). ity parametergB for the single kink at the fixed forcé=0.5 and

three different values of the elastic constgntg=0.3 (down tri-
_ _angle3, g=1 (open diamonds andg=3 (triangles. The critical
pare‘?' to theg=1 case. One can see that mk(f) depen velocity for the constant damping=0.012 extracted from Fig. 3 is
d.enIC|es for these two values of the elastic constant are Velyis, shown by solid diamonds.
similar (except the left boundary of the double kink as will
be discussed below in Sec. 1)B

When the dc force adiabatically changes within the stabi
ity interval, thev ;. (f) dependence does not exhibit hyster-
esis, the kink velocity is uniquely defined by the force. How—_v only for a large enough value g (e.g., wheng

A TPt — Vcrit e

ever, the system exhibits a “trivial” hysteresis; if the system —1/21r for the parameters used in Figh. 3

oes to the running state, for example, when the force in- . . . ;
2reases above,, tk?is state remains Snchanged if the force The cr|t_|cal vglocny of the smgle k_mk extragted from the
decreases back to lower values. In the same way, when tdeata of Fig. 3.'5 shown b.V. solid dlamonds in Fig. 4. As
ollows from Fig. 1, the critical velocity does not depend

double kink splits into two single kinks during force decreas'essentially on the damping constantThis allows us to use

ing process af<f,, the two kinks continue to move being e following algorithm proposed first in Reflg]. Starting

separated, and do not unite again into the double kink WheH1 he kink fi X p ¢ |
the force increases aboveg, (see Ustinowt al. [5]). fom the kink configuration at a fixed forcé and large

The described results already allow us to make the foI—enoth dampingy, we slowly decrease; until the kink

lowing conclusions(1) driven supersonic kinks do exig®) b(_acomes unstable anq the system goes to the running state
multiple kinks also exist in the driven systert®) the mul- W't.h all the atoms moving with approm_rnatel_y th(_a same ve-
tiple kinks cannot be static; when the kink velocity decreasel;oc'ty f/m. The simulation results obtained in this way are
below a certain value, the multiple kink either splits into presented in Fig. 4 for three different values of the eIaspc
separate single kinks, or the system goes to the running stat%gFStf?.mg (g—Ob3, L, ?jmfj ;B>Oon1e %ag setle trzt tshupersonlc
(4) the stability intervals of multiple kinks may overlae.g., velociues are observe Q8 0.1~0.2 only. € same
f,,>f, for the parameter values used in Fig; () on the time, the shape of the static kink does not change essentially

other hand, there may exist forbidden gaps where no kink om that of t_he classical FK moqlel f_or these_\(alues,[bf
are stablee.g., f,,<fs as in Fig. 2; (6) the comparison of hus, the existence of supersonic kink velocities could be

the results for different values of the damping constant sug.(-:OnSIdeer as a solely dynamical effect, L.e., the anharmonic-

- - : - -ity of the interatomic interaction leads to a change of the
ﬁ;sif ittP;a\tetlk:)eCi?;aln factor, which determines the kink Stabllcharacter of kink’s motion from the SG-like to the Toda-like
Below, we will check these conclusions in detail as Welltyp\(/e\)hen the driving force increases above the PN value
as study the mechanisms of the kink decay. fpn, the kink begins to move and radiate phonons due to the
discreteness effects. The radiation increases with kink veloc-
ity (e.g., see the shape of the supersonic kink in Figahd
As was mentioned above, the supersonic kinks could bénally this radiation leads to kink decay. Note that although
expected for the anharmonic FK model only. Indeed, in Figthe kink velocity essentially depends on the anharmonicity
3, we present the simulation results for the single kink forparameterB, the v, (f) dependence remains qualitatively

I_g=1, 7n=0.012, and different values of the anharmonicity
parameterB. One can see that the kink can reach a super-
sonic velocityv,;,>c before it becomes unstable a,,

A. Single kink
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AL =0.29 thk/c=1.326 , R
oL 0 25 ]
> *F 9529500290882 24 42 ] o
¢ ; HHDOO0, 0 100 99 0400 OF e ~. 1300
0 L 2
Bl PR N U S S E NPT T BATU AR By SRR
200 250 300 350 400 450
atom

FIG. 5. Shape of the single kink just prior to its decay fr
=1/m, g=1, andn»=0.012. 1250

the same for all values g8 shown in Fig. 3.

When the force exceeds the critical valfig, the sce-
nario of kink’s decay for low values of the anharmonicity 20
parameterg is similar to that of the classical FK model
described in detail in Ref10] as shown in Fig. 6. The pri- . .
mary kink generates new kink-antikink pairs. The newly cre- F'G: 7- Decay of the single kink forg=1/m, g=1, 7

ated antikinks also generate the kink-antikink pairs, and theZO'Olz’ and =0.295. The initial configuration corresponds to the

- - o -.Steady kink motion af =0.29. A new kink-antikink pair is created
collisions o_f these kinks and antikinks lead to the transition, il of the moving kink at a distance10a from the primary
to the running state. Kink

The kinetics of the kink decay at large values of the an-
harmonicity 3 is different. As one can see from Fig. 7, now see Ref[1], and references therdirwhen >0, the anti-
a new kink-antikink pair is created not just behind the pri-kink moves more slowly than the kink. At=f,, , the anti-
mary kink, but at some distan¢about ten lattice constants kink is unstable and generates new kink-antikink pairs. This
from the kink center. Recall that the main effect of anharmoprocess finally results in the transition of the whole system to
nicity is the violation of the kink-antikink symmetrie.g.,  the running state.

B. Double kink

The force-velocity characteristics of the double kink for
different values of the anharmonicity parameferare pre-
sented in Fig. 8. In these simulations, we first found the
steady-state moving kink configuration somewhere at the
middle of the stability interval starting from the Toda kink
shape, and then adiabatically increased and decreased the dc
force. The kink shape for different values gf was also
obtained one from another by adiabatic change of this pa-
rameter. One can see that at I@ythe double kink exists for
a very narrow interval of velocities. For example, f8r
=0.01, the double kink moves with almost a fixed velocity
Vwink=0.85c. Recall that in the undamped discrete SG
model without driving, the double kink can exist with a fixed
velocity vin=0.82c only [6]. In the model under study, we
have to apply a dc force to compensate for energy loss due to
the external damping. The instantaneous profile of the double
kink for 8=0.01 is shown in Fig. 9. The kink shape is

e == smooth at the left boundary of the stability intenj&lig.
80 160 120 140 160 180 200 9(a)]. Whenf increases, the kink begins to radiate in order to
compensate for the increase of the force overfthevalue.

FIG. 6. Destruction of the single kink fo8=0.01, g=1, » The radiation increases with[see Fig. 9f and finally atf
=0.012, and=0.425. The initial configuration corresponds to the = f,, the double kink collapses.
steady kink motion af =0.423. The transition to the running state ~ When the anharmonicity parameigfincreases, the inter-
begins just after the first kink-antikink collision. val of allowed kink’s velocities increases too. For example,

600

550

500

450
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v A p=001 ] -1.5
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000 005 010 015 020 025 030 035 g g=1 n=0.012 =0.01 s
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- 4 e
! I ' I ¥ I t I v L oo
o 1.0 -_ (b) double ] . ] - ‘ e . 650 700 750
\g L g=1 n=0.01 NGV S RIS AEEE atom
- e Tl et Al o - te FIG. 9. Shape of the double kink fg8=0.01, =0.012, and
o i v p=0.26 -
05 L . 291 v p=021] g=1 at(a) the left boundary {=0.04, v;,./c=0.843) andb) the
X ~ v p=1/2r | right boundary £=0.27, v /c=0.914).
L v p=0.11 4
- v B=g.gt15 . while the ahead single kink continues to move over a dis-
ool oy . 13_|' ] tance'fU.Toda/n- o
0.00 0.01 0.02 0.03 0.04 0.05 A similar behavior is observed when the force decreases
adiabatically. Atf = f,, the double kink splits into two single
( \ 2l ( p ngl
force kinks separated by one lattice constant, and the velocity jum-

plike decreasefsee Fig. &)]. With further decrease df the
distance between the single kinks jumplike increa@sxh
time on one lattice constanand simultaneously the velocity

FIG. 8. (a) Velocity v /c vsf for the double kink for different
values of the anharmonicity paramej@ias indicated in the legend

(g=1 and%=0.012). The dash horizontal lines show the velocity . . .
of the corresponding Toda soliton. Par(e) shows thew q(f) decreases until both kinks stop. The same scenario was ob-

dependencies at low forces. The jumps correspond to splitting of thgerved by _Ustlno‘et al.[5] in the classical FK_ m_odel. In the
double kink into two single kinks separated by one, two, etc., lattice@nharmonic model, however, such a scenario is observed for
constants. low values of the anharmonicity parameter ofdyg., forg
<0.3 in the case ofj=1). For a larges, for example, for
for B=1/m, the velocity of the double kink may take values the case of3=1/7 shown in Fig. 13, the scenario is differ-
within the interval 1.7% v, /c<2.16. The kink's shape for ent. The double kink becomes unstable and emits antikinks,
this case is shown in Fig. 10. One can see that when th&hile newly created kinks move together with the primary
double kink moves with a velocity close to the Toda velocity kink (creating a “traffic jam” discussed in detail in RgB]).
UTogs~ 1.81c, its shape is smootfFig. 10b)], i.e., the kink  The total velocity of the system grows approximately lin-
moves almost without radiation. But when the kink velocity early with time, and finally the whole system goes to the
deviates from the Toda value, the double kink begins to rarunning state.
diate and finally decays. The scenarios described above are typical for the kink
In the example described above, where the dampjng decay. However, for some sets of the model parameters, we
=0.012 was used, the value of the Toda velocity was veralso observed a more complicated kinetics of the decay. For
close to the left boundary of the stability interval. When theexample, in the case of a smaller value of the elastic con-
damping is larger, e.g»=0.05, the velocityv,4,iS at the  stant,g=0.5, the double kink transforms into the triple kink
middle of the interval of the velocities allowed for the double and the single antikink during the force decreasing process at
kink, and now oscillations of the kink shape are very largef =f,, (see Fig. 2 Then, with further decrease of the force,
both at the left and at the right boundaries as shown iratf=0.01, the triple kink annihilates with the single antikink
Fig. 11. so that the system leaves with two single kinks. One more
The double kink can exist in the moving state only. Whenexample of a nontrivial scenario of the kink decay will be
the force is turned off, the double kink splits into two sepa-described below for the case of the triple kink.
rate single kinks as illustrated in Fig. 12. The double kink  Finally, let us describe the mechanism of kink decay when
leaves a single kink behind itself, which then quickly stops,the force adiabatically increases above the stability interval.
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W o1 1=0.012 p=lh o 2 Lq
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100 150 atj::: 250 300 ; [ (b) £=0.62 v, /o=181 )
| g=1 n=0.05 B=1/n ] |
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S -l =015 v, /c=1813 T y 0 [ _
2 - @ 1L (c) £=0.875 v, /c=2.02 i
W o= q=0012 p=l/n .1 B g=1 n=0.05 p=l/n ]
10 | : .
> F 2 B T T e DT ST COTTY Lt Tt St SO T CT spepyepepe
0 P T B T I 300 350 400
200 250 300 350 400 FIG. 11. Shape of the double kink f@=1/7, g=1, and»n
atom =0.05 for different values of the forcéa) close to the left bound-
ary, (b) when the kink velocity is close to the Toda velocity, dog
AURRERPUSAY SRSV DNV EAE close to the right boundary.
s [ _ \ h triple kink for different values of the anharmonicify are
3 T (©F033 v, /c=2.156 1 . summarized in Fig. 16. In the limiB—0, the triple kink
B — . . exists only for an approximately constant velocity in agree-
20 _ T ment with the Champneys and Kivshar reg6lt for the un-
10k g=l n=0012 p=l/n o] damped undriven classical FK model. For example, gor
> ok ] =0.01, the velocity of the triple kink lies within the very
z narrow interval 0.%v,/c<0.94. At larger values of the
350 400 450 500 550 anharmonicity, parametg®>0.1, the kink velocity changes
atom with force, but remains within a narrow interval around the

. Toda velocity(6).
FIG. 10. Shape of the double kink f@=1/7, »=0.012, and

g=1 for different forces:(a) at the left boundary f(=0.14,
viink/c=1.771), (b) f=0.15 whenuv,j,/c=1.813>vyg./C, and

(c) at the right boundaryf(=0.33, v\ /c=2.156). 1300

At low anharmonicity parametes, the scenario is similar to

that of the single kinkle.g., see Fig. 14 for the case gf

=0.01 and compare it with Fig.)6The primary kink emits 1250
new kink-antikink pairs, then the antikinks also emit new
kink-antikink pairs, and the collisions of kinks with antikinks

result in the transition to the running state. At large values of _

the anharmonicity parametes, the scenario, however, is
different. Now a new kink-antikink pair is created far away = 1200
from the primary kink, e.g., at a distaneel00a as shown in

Fig. 15. Then, the newly created kink generates new kink-
antikink pairs, and this finally results in the transition to the

running state. Note that close to the instability threshold, the {150
kink's shape is irregulafsee Fig. 1(t)]. Note also that at

higher values of the damping constant the scenarios are simi

lar, although the distance, where the new kink-antikink pair

is created, is now short¢e.g.,~10a for »=0.05). 1100

100 200 300 400
C. Triple kink time

Properties of the triple kink are in many aspects similar to  FIG. 12. Free evolution of the double kink for the parameters
those of the double kink. The,;(f) dependencies for the g=1, g=1/m, and=0.012.

066602-7



BRAUN et al. PHYSICAL REVIEW E 67, 066602 (2003

180

950

170

900

i; 160 s 850

800

150

750

1400 E ~00
100 200 300 400

. 50 100 150 200 250
time

time

FIG. 13. Decay of the double kink for the= 1/7 case when the

force decreases adiabaticallj=0.13, g=1, and »=0.012; the

initial configuration corresponds to the steady kink motionf at
=0.14).

FIG. 15. The same as Fig. 14, but for large anharmonicity pa-
rameterB=1/m (f=0.34, the initial configuration corresponds to
the steady kink motion at=0.33).

increases with force growing until the kink becomes unstable

The shape of the triple kink is shown in Fig. 17 for a and decays &t=f5, . In the case o3= 1/, the radiation is
nearly harmonic mode|3=0.01, and in Fig. 18 for a large low when the kink velocity is at the middle of the stability
value of the anharmonicity parametgr=1/7r. In the former interval, and increases when the kink velocity deviates from
case, the radiation is low at the left bounddry f4 and  the Toda value to lower or higher values. Again, note that,
close to the boundaries of the stability interval, the oscilla-
tions in the kink’s tail are irregular.

Analogously to the double kink, the triple kink can exist
in the moving state only. When the force is turned off, the

110

105 4.0 T
35 F § ]

100 sk § § _:
N 25 F ; § ]
" C : -W i
= 20 E ---- Toda E

E - : _ng —e—p=1/n=0.318 ]

> 153 : X v A B=026 1

“F - g 22 v A =021 ]

% : WWM_- v a E=l/21: ]
1.0 F v A B=0.11 7

s v A p=006 1

v A p=001 ]

85 0.5 . ' :
triple kink (g=1, n=0.012) 3

T Y\ )L TETTTTTI IYTITIIT FTYTITTITI ITTTTTITTY FTTTITITI FETTITTIN FTTITTT:

o0 =00 200 800 350 00 01 02 03 04 05 06 07

. N force
FIG. 14. Decay of the double kink when the force adiabatically

increases above the stability interval for the case of small anharmo- FIG. 16. v, (f)/c for the triple kink for different values of the
nicity parametei3=0.01 (f=0.275,g=1, and»=0.012; the ini-  anharmonicity paramete8 as shown in the legendy&E1 and »

tial configuration corresponds to the steady kink motionfat =0.012). The dashed horizontal lines show the velocities of the
=0.273). corresponding Toda soliton.
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FIG. 17. Shape of the triple kink fg8=0.01 for three values of
the dc forcei(a) close to the left boundaryp) at the middle of the
stability interval, andc) close to the right boundaryg&1l and FIG. 19. Decay of the triple kink in the anharmonic model for
=0.012). adiabatically decreasing force8€ 1/w, f=0.415,g=1, and »

=0.012; the initial configuration corresponds to the steady kink

triple kink splits into single kinks leaving them behind itself. Motion atf=0.42).
When the force is decreased adiabatically, the triple kink

becomes unstable dt=f; . At low anharmonicity param- model, e.g., Whe?’ﬁ>°-11 for th_eg=1 case, the_ system
eter, e.g.,8<0.11 forg=1, the triple kink leaves a single goes to the running state according to the scenario shown in

kink behind itself; the “ahead” double kink also soon splits Fig. 19. Now new kink-antikink pairs are generated in the

into two single kinks separated by one lattice constant, an(é'.nks tail far away from the primary moving _kan_at a
the further scenario is similar to that described above for th 'Sta”9e?~ .10&1_2001 for the_ parameters used in Fig.)19
case of the double kink. However, in the highly anharmonicand Fh|s stimulates the transition of the whole system to the
running state.
An interesting scenario was observed for the “intermedi-

0 A WYY VWV vV s ate” 8=0.11 case. When the force is decreased adiabatically,
at f=0.095 the triple kink splits into a double kink K2 and
a single kink. The single kink almost immediately generates
in its tail a new kink-antikink pair. The newly created kink
| and the old single kink are coupled together intoka Xink
(two single kinks separated by one lattice congtast that
4 there are two double kinks and ™) and one antikink in

] the system at this stage of system evolution. Tké Rink

- moves slightly slower than thek2kink. All collisions be-

] tween these kinks are “elastic.” With further decrease of the
1 ] force, the antikink and the double kink annihilate during

(a) =042 v, _ /c=2.96
g=1 n=0.012 B=1/n

u/a
I\

(=4
|

(b) £=0.51 v, /c=3.35
g=1 n=0.012 B=l/n

their collision thus creating a single kink, so that the system
has one single kink and oné2 kink in the result. Then, the
2k* kink overtakes the single kink, these join together and
move as one complex. With further decreasef,athe dis-
tance between single kinks in the&k2 kink begins to in-
crease, and finally all three single kinks stop.

Finally, when the force is increased above the stability
interval, the triple kink collapses and stimulates the transition
of the whole system to the running state as well. The kinetics

FIG. 18. Shape of the triple kink fg8= 1/ for three values of  Of this transition is slightly different at low and large values
the force:(a) close to the left boundaryb) when the kink velocity ~of the anharmonicity paramete8. For example, atg
is close to the Toda velocity, an@) close to the right boundary =0.01, the triple kink generates kink-antikink pairs just be-
(g=1 and»=0.012). hind itself. The antikinks move to the Igfagainst the force

(c) =0.67 v, /c=3.76
=1 n=0.012 B=l/=

u/a
I\

650 700 750 800 850
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FIG. 20. Scenario of destruction of the triple kink in the anhar-  FIG. 21. Collision of the double kink and the single kink in the
monic model for the force increasing procegg=(1/m, f=0.675,  nearly harmonic model£=0.01,f=0.15,g=1, and»=0.012).
g=1, and »=0.012; the initial configuration corresponds to the

steady kink motion af=0.67). the triple kink is stable at the given value of the force, it
moves without further changes.

) ) . ) ) ) Moreover, when the system contains one double kink and
while the kinks join together increasing the topological geyerg single kinks, the double kink, having a higher veloc-
charge of the primary kink. The moving antikinks generatejy, |l overtake the single kinks one by one, increasing its
kink-antikink pairs as well, and collisions of newly created ., topological charge. However, the kink topological
kinks and antikinks result in the transition to the ru””ingchargep cannot grow infinitely—whem reaches some criti-
state. This scenario is similar to that for the single kink and.4 value, the kink becomes unstable. For example, Fig. 22
double kink described above. On the other hand, at a highows the system configuration when the double kink al-
anharmonicity of the interaction, e.g., for the case ®f (gady overtook three single kinks and reached the topologi-

=1/m shown in Fig. 20, the scenario of the transition re- 4 chargep="5. After that thep=5 kink becomes unstable,
minds us that for the case the force decreasing prdcess- i pegins to emit antikinks, and the next collision with a

pare Figs. 20 and 29Now new kink-antikink pairs are gen- single kink results in the transition to the running state as
erated far away from the primary kinkat a distance gphown in Fig. 23.

=200a), and this stimulates the transition of the whole sys-

: In the highly anharmonic model, the transition to the run-
tem to the running state.

ning state begins much earlier. For example, in the case of
_ N B=1/m, already the first collision of the double and single
D. Kink collisions kinks results in the transition to the running state as demon-
In the preceding sections, we considered the cases where
there was only one kink in the system. Now let us discuss the T T T T T T T T T T T
evolution of the system with several kinks. If all kinks are of Wﬁ """""""""""""""""""""""""""""""""""" ]
the same topological charge, these all move with the same¢ =1 s
velocity in the steady state and, therefore, these cannot COl =2 [ B -
lide. 5 .
However, due to overlapping of the stability intervals, the g B O TOOS SO STOUU S TOUTUATER Y OSOu SOOI OO OO .
system may contain kinks of different topological charges = 5| . ...
simultaneously, for example, a single kink and a double kink.

i . _ S —
Because the single and double kinks are characterized b ,
different velocities at a given value of the dc force, they must ~ ~ T ——
collide after some time. The result of such a collision de- 1150 1200 1250 1300 1350

pends on the driving forcé and on the anharmonicity pa-
rameterB. For example, in the case of nearly harmonic in-
teraction between the atomB=0.01, the collision results in FIG. 22. The system configuration after creation of fhe5
the formation of a triple kink as shown in Fig. 21. Becausekink (3=0.01, f=0.15,g=1, and5=0.012).

atom
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© E F ]
~ > X ]
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0 10 20 30 40 50 60
1250

50 100 150 200 250 300

time FIG. 25. Dependencey,/c vs f/ 7 for the single, double, and

triple kinks for three different values of the damping constant:
FIG. 23. Collision of thep=5 kink with the single kink g~ =0.012, 0.024, and 0.0%3( 1/ andg=1).
=0.01,f=0.15,g=1, and%=0.012).
mainly by its velocity. Indeed, if we replot the data from Fig.
strated in Fig. 24. In this case, the stability intervals of thel in the coordinates,;,./c versusf/» (see Fig. 25 then the
double and triple kinks do not overlap, so that the triple kink“scaled” force-velocity dependencies for different values of

is unstable at this value of the force. the damping constany almost coincide, especially at left-
hand parts of the stability intervals.
[1l. DISCUSSION If the value of the driving forcd is kept fixed, then the

kink velocity v i, monotonically increases with the anhar-
monicity parametep as shown in Fig. 26. When the anhar-
monicity exceeds a certain value, e.§>0.1 for theg=1
case, i becomes close to the Toda velocity,q,. In the
highly anharmonic FK model, the multiple kinks can exist

As we mentioned already in Sec. Il, the stability of the
multiple kink in the anharmonic FK model is determined

600 o T
[ n=0.012 g=1 N=2000 ]
550 25 tiplekink: 4 £0.15 & £022 §
[ & £032 & =043 Toda 2]
© [ ]
N o 20f ]
500 2 [ ]
> : 000909%
15 F A
I ~ » i
450 [ o ]
1.0 M i
double kink: ¢ f=0.145 ----Toda 1
400 I TP SRR EPEEE APETETT SR 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30
50 100 150 200
time B

FIG. 24. Collision of the double kink and the single kink in the  FIG. 26. Dependence of the veloctieg,/c of the double and
highly anharmonic model =1/, f=0.25, g=1, and 7 triple kinks on the anharmonicity paramet@rat a fixed value of
=0.012). the dc force(shown in the legendfor g=1 and »=0.012.

066602-11



BRAUN et al. PHYSICAL REVIEW E 67, 066602 (2003

W2 S B L I L B S losses due to phonon radiation, which is the most difficult
- () double kink v v v problem[17]. Although there are methods to estimajg,

3 Lir gl 1=0.012 /v/ ] (e.g., see Ref1], and references thergjrthese are too com-
zﬁ 10 ool . | plicated and the achieved accuracy is typically not too satis-
5 I v%A/ A \ J factory. Besides, such an approach cannot prgdict the stabil-

0.9 | —W¥—max A ity intervals of multiple kinks. As was shown in R€f10],
N T —A—Imm ] the instability of the fast kink is in fact a delicate problem,
000 005 010 015 020 025 030 the l’(Ink bepomes unst_ab_le du_e to the exc!tatlon_of an _mternal
kink’s localized mode in its tail. Thus, a direct simulation of
B the dependencey;,(f) still remains a more straightforward
1.2 _-' (b) ;Iilpllelk'ir;kl A 'v/'v- approach to the problem.

g L1[ gl n=0012 /v/ ]
> I !/ 1 IV. CONCLUSION
\g 10 |------ v AT PN P . .
> i / A ] Thus, we have presented the detailed numerical study of

0.9 ‘/‘ V¥ max . multiple kinks in the driven anharmonic FK model. We
0.8 (A, i‘,_.‘,nfn, ittty showed that multiple kinks with a topological charge 2

000 005 010 015 020 025 030 do exist in thediscretemodel in accordance with the results

8 of the previous works. These kinks cannot be static, they are
stable in the moving state only.

FIG. 27. Critical velocitiesv /v o4 Of the double and triple At low anharmonicity of the interatomic interaction, when
kinks as functions of the anharmonicity paramegefor g=1 and  the dimensionless anharmonicity paramegaris lower than
7=0.012. 0.5, the multiple kinks move with a subsonic velocity,.

_ . N The value of this velocity is in agreement with that calcu-
only with supersonic velocities close to those of the correjated analytically in Ref[6]. The kink velocity is almost

sponding Toda soliton. ~ independent of the external drivifigThe interval of forces,
Thus, for a large enough degree of the anharmonicity ofyhere the multiple kink is stable, is determined by,
the interatomic interaction, e.g3>0.1 forg=1, the behav- ~Mm, 7V from the left-hand sidéthe force must compen-

ior of the multiple kinks should remind us that of the Toda sate energy loss due to the external dampindyile from the
soliton. The multlple kink is stable for forces within the in- right_hand side the kink Stabmty is destroyed due to increas-
terval f, <f<f,, and its velocity monotonically increases ing of phonon radiation, which emerges in order to compen-
with f within a nonzero intervab . min<viink<Up, max- Th®  sate the energy(f—f,) pumped into the system by the
critical values of the kink velocity as functions of the anhar-driving. When the force is outside the stability interval, the
monicity parametep are plotted in Fig. 27. One can see that multiple kink decays. At low forcesf<f,, the multiple
the width of the interval of the allowed kink’s velocities kink typically splits into several kinks with lower topological
increases with3, and the Toda velocity lies inside the sta- charges. This process proceeds through intermediate stages,
bility interval for 8>0.1. When the kink velocity is close to where separation between the child kinks increases by steps.
UTodar It MOVes almost without radiation. But when the kink At high forces,f>f,,, the multiple kink becomes unstable
velocity deviates from the Toda one, it begins to radiateand emits kink-antikink pairs behind itself. The newly cre-
phonons into its own tail and finally collapses. ated antikinks move against the force with approximately the
The whole dependenag.(f) for the multiple kink may,  same velocity due to kink-antikink symmetry and emit kink-
in principle, be found from the force balancing arguments. Inantikink pairs as well. Then, collisions of kinks and antikinks
the steady state, the driving force must be compensated hgad to the transition of the whole system to the running
the total frictional force,f=mg7neqvink, Wherem, is the  state. Note that this scenario is approximately the same for
effective kink's mass andy= 7+ 7;n is the total damping the single p=1) kink as well[10].
experienced by the kink, which consists of the external |n a highly anharmonic FK model, whe@a>0.5, the
damping » and an additional dampingy;,, emerging due multiple kinks are supersonic, and their properties are close
to radiation of phonons. The mass, can be calculated to those of the Toda soliton. Now a range of allowed kink’s
from the kink’s shape through the integred.g., see Ref. velocities is much larger than in the classical FK model, and
[16] and also Ref.[1], and references therginm, the value ofv, monotonically increases with When the
=a 1f*Zd4u’'(2)]% The kink's shape can be found, for kink velocity is close to that of the corresponding Toda soli-
example, with the help of the variational method developedon, i.e., atf~m,nvr.qs, the multiple kink moves almost
in Ref.[11] as a proper combination of the SG kink sh&pe  without radiation. But when the kink velocity deviates from
and the Toda soliton shagB) with some fitting parameters. this value(either to lower or to higher valugsthe kink be-
Even if we ignore the radiational losseg,, the described gins to radiate phonons and finally becomes unstable. The
approach leads to a qualitative correct dependengg(f) scenario of kink’s destruction is different from that of the
[11]. classical FK model. Now the kink’s tail becomes irregular,
However, in order to get a quantitative agreement with theand new kink-antikink pairs are generated far away from the
simulation results, one should calculate analytically theprimary kink. The creation of these kink-antikink pairs leads
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to the transition of the whole system to the running state. Awwhere the probability of thermal excitation of new kink-
low damping, e.g., a=0.012, the new kink-antikink pairs antikink pairs is negligible at low enough temperature, all
are emerged at a distance of about ten lattice constants froresults of the present work should be valid as has been men-
the primary kink in the case of them2kink, at about 100 tioned in Ref.[11]. Note that at lower forces;<f,, the
lattice constants for the double kink, and>aR00a in the  single kinks in the anharmonic FK model should come close
case of the triple kink. When the damping constant is largerto each other creating a “traffic jam” stafé].
the kink’s tail is shorter and these distances are smaller too. Note also that while the & kinks can be smoothly accel-
It is important to note that multiple kinks with a topologi- erated up to supersonic velocities starting from the static
cal chargep=2 may only be observed in a system with a configuration, the multiple kinks withp=2 have to be
low enough dampingy, because the driven kink has to reachlaunched into the system artificially with already correct
a high velocityv i~ vTo4a at forcesf<1, i.e., before that shape and velocity, e.g., from a free end of the chain, because
the minima of the substrate potential disappear. Note alsthese cannot exist in the static state.
that in the simulation of the driven anharmonic FK model, The supersonic and multiple kinks discussed in the
we did not observe the hierarchy of multiple kink states prepresent paper may have applications in the different physical
dicted in Refs[14,15, probably, because we always startedsystems already mentioned in the Introduction. In particular,
from the monotonideither SG or Todekink shape. the instability of fast kinks is responsible for the sharp tran-
Typically a system may contain either one multiple kink sition from the low-mobility motion to the high-mobility
or several kinks of the same topological chapy@ train of  sliding state and the hysteresis in driven systems. Although
multikinks), which all move with the same velocity. When we do not know experimental situations, where these types
the kinks of different topological charges are present in theof excitations were directly observed, molecular dynamics
system simultaneouslhis is possible if their stability inter- (MD) simulation of dislocation dynamics in two-dimensional
vals overlap, these kinks will move with different velocities (2D) systems exhibits some features discussed in the present
and must collide after some time. Such a collision is typi-work. In particular, Gumbsch and G&a8] observed a su-
cally destructive and leads to the transition of the whole syspersonic propagation of dislocations. Also, Pouggeal. [19]
tem to the running state. For example, even when the singland recently Gornostyreet al. [20] have observed in MD
and double kinks are united into a triple kink after the colli- simulation of the 2D FK model the nucleation of kink-
sion as was observed in the case¥0.01 (see Fig. 2],  antikink pairs in the tail of the moving dislocation under the
next collisions of the triple kinkwhose velocity is the larg- applied (strong enoughstress. It was noted that such an
est one in the systenwith other kinks will finally destroy effect may lead to a nontrivial temperature dependence of
the steady state. yield stress in metals and alloys with a sufficiently high PN
The effect described above leads to an interesting concluelief.
sion that at a nonzero temperatufethe system of single
kinks should be unstable at forcés-f, even if the 27
kinks are still stable at the given forcé<f,,. Indeed, at
T>0 the kink’s velocities fluctuate, so that some of the kinks  Discussions with F. Marchesoni and M. Peyrard are grate-
may collide and form a double kink. Besides, double kinksfully acknowledged. The work of O.B. was supported in part
may also be created due to thermal fluctuations. Then, they NATO Grant No. HTECH.LG 971372 and INTAS Grant
double kink will move faster than other single kinks. There-No. 97-31061, and that of H.Z., B.H., and J.T. by grants from
fore, it will overtake the single kinks one by one, finally the Hong Kong Research Grants Coun@lGC) and the
destroying the steady state. However, the described scenatitong Kong Baptist University Faculty Research Grant
operates in thénfinite system only. In a finite-length chain, (FRG).
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