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Role of entropy barriers for diffusion in the periodic potential
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Diffusion of a particle in theN-dimensional external potential which is periodic in one dimension and
unbounded in the otherN21 dimensions is investigated. We find an analytical expression for the overdamped
diffusion and study numerically the cases of moderate and low damping. We show that in the underdamped
limit, the multidimensional effects lead to a reduction~compared to the one-dimensional motion! in the jump
lengths between subsequent trappings of the atom at the minima of the external periodic potential. As an
application, we consider the diffusion of a dimer adsorbed on the crystal surface.
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I. INTRODUCTION

A variety of phenomena in physics and other fields can
modeled as Brownian motion in an external periodic pot
tial @1–3#. One particular example, the surface diffusion
atoms or small clusters, is of great fundamental and tech
logical interest@4#. During crystal growth, the deposited a
oms diffuse over the surface until they become incorpora
into the lattice. On the semiconductor Si~100! or Ge~100!
surface, most of the deposited Si or Ge atoms combin
form dimers, and the diffusion of such dimers has recen
been studied experimentally by scanning tunneling micr
copy @5#. Moreover, atoms adsorbed on metal surfaces
some cases form closely packed islands that diffuse a
whole @6,7#.

Theoretically, the problem of diffusion can be describ
by a Langevin equation for the atom~s! or, equivalently, a
Fokker-Planck-Kramers equation for the distribution fun
tion in the phase space@1,2#. In the trivial case of Brownian
motion without the external potential, the diffusion coef
cient is equal toD5D f[kBT/mh, wherekB is the Boltz-
mann constant,T is the temperature,m is the particle mass
and h is the viscous damping coefficient that models t
energy exchange with the substrate~thermostat!. For a single
atom in the one-dimensional~1D! sinusoidal external~sub-
strate! potential, the value of diffusion coefficient is we
known as summarized in the Risken monograph@1#. Exact
results exist for the overdamped~Smoluchowski! case,h
→`, when@8#

D5D fI 0
22~h!, ~1!

where h[«/2kBT, « is the ~total! height of the substrate
potential, andI 0(h) is the modified Bessel function, and i
the underdamped limit,h→0 when@1#

D5D fG~h!, ~2!

where

G~h!5~h/2p!1/2ehI 0
21~h!J~h!,
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J(h)5*0
1duu23/2e22h/uE21(u), and E(u) is the complete

elliptic integral of the second kind. At low temperature
kBT!«, both expressions~1! and ~2! take the Arrhenius
form, D5D̃A with A5 exp(2«/kBT) and D̃'v0

2a2/2ph in
the high-friction case@herea is the period of the substrat
potential andv05(2p/a)(«/2m)1/2 is the frequency of os-
cillation at its minimum#, andD̃'pD f /2 in the low-friction
limit. In general, the diffusion coefficient can be found n
merically with practically any desired accuracy using the m
trix continued-fraction-expansion method@1#.

At low temperatures,kBT!«, when the diffusion pro-
ceeds by uncorrelated thermally activated jumps over
barrier from one minimum of the external potential to a
other, the diffusion coefficient may be presented asD
5RA^l2&, whereRA is the rate of escape from a minimum
of the external potential and̂l2& is the mean-square jum
length. For moderate or large damping,h*v0, when only
jumps for one perioda of the external potential are possibl
one should takel5a and R5RTSTB(h), where RTST
5v0/2p is the escape rate given by the transition st
theory~TST! @2,9#, and the factorB(h)5(z211)1/22z with
z5h/2vs provides an interpolation between the TST a
overdamped limits, as was found by Kramers@10# @herevs is
the ‘‘saddle’’ frequency at the saddle pointx5xs , near
which the external potential has the formV(x)'«
2 1

2 mvs
2(x2xs)

2; for the sinusoidal potentialvs5v0]. The
underdamped limit,h!v0, is qualitatively different: in this
caseR'2h«/pkBT}h, as was found first by Kramers@10#,
but the average jump length diverges asl}h21. Thus, this
again leads to the dependenceRl2}h21, similarly to the
overdamped case. The occurrence of long jumps,l.a, has
been observed in a number of experiments on surface d
sion @4,11#. The interval from low to moderate friction is
covered by the Mel’nikov-Meshkov formula@12#

RMM'RTSTexpS 1

pE0

`

du

lnH 12 expF2DS u21
1

4D G J
u21

1

4

D ,

~3!

where D58hh/v0. Thus, the whole interval of frictions
may be described by the interpolation formulaR
©2000 The American Physical Society02-1
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O. M. BRAUN PHYSICAL REVIEW E 63 011102
'RMMB(h), which was checked numerically in@13#. Com-
bining this expression forR with the numerically calculated
values ofD, one can find the distribution of jump length
@14#. Note that the widely used TST expressionD
'RTSTAa2, where the diffusion coefficient does not depe
on the damping coefficient, operates in fact for a narr
interval of friction close to the pointh;v0 only ~which,
fortunately, often corresponds to experimental situations!.

Although the results described above for one-dimensio
diffusion are very important and often lead to reasona
estimations for experimentally measured diffusion coe
cients, in real systems the motion always takes place
N.1 configurational space. Indeed, even for diffusion o
single atom adsorbed on a crystal surface,N52 at least.
Besides, the diffusing object may have internal degrees
freedom. Multidimensional effects modify both the esca
rate R and the jump lengthl. The escape rate can be pr
sented asR5R1DF, where the coefficientF is known as the
‘‘entropy factor’’ @15#. The value ofF can be found with the
help of transition state theory@9#, which yields F
'(P iv0,i)/(P ivs,i), wherev0,i are the frequencies at th
minimum andvs,i are the saddle frequencies for all degre
of freedomi except the one given along the diffusion path.
this approach,F can be interpreted asF5 exp(DS/kB), where
DS is the difference in entropy between the saddle a
minimum-energy configurations. The entropy factor is oft
used to explain the ‘‘compensation effect’’@4#, when during
an experiment one observes that a decrease in the activ
energy~calculated as a slope of the Arrhenius plot of lnD
versusT21) is compensated by a decreasing of the prefac
As for the jump length, while forh*v0 it still is given by
l5a, in the underdamped limit it is modified qualitative
compared with the one-dimensional case. In multidim
sional space, the path connecting adjoining minima of
external potential may not coincide with the direction of ea
crossing at the saddle point. Therefore, the probability
deactivation during long jumps is enhanced, leading to a
duction in the jump length,l,l1D @16–18#. In particular,
for the 2D-periodic substrate potential with square symm
try, it was found numerically@18# that D}h20.5, which
givesl}h20.75.

The multidimensional effects are also important in t
diffusion of molecules or small clusters: even for diffusion
the 1D periodic potential~e.g., along ‘‘channels’’ on fur-
rowed or stepped surfaces! one has, for the diffusion of the
dimer, N52 at least. Diffusion of the dimer was studie
numerically by Vollmer@19# with the help of the matrix
continued-fraction-expansion technique. The adiabatic
slow motion of a linear molecule in the 1D sinusoidal pote
tial was analyzed in@20#, where the adiabatic trajectory wa
found for a general case. This made it possible to find
activation barriers and the minimum-energy and saddle-s
frequencies and then to estimate the diffusion coefficient

The aim of the present paper is to study the multidim
sional effects in the diffusion processes. We consider
typical examples: motion of a single atom in a channel tha
periodic in one dimension and parabolic in others, and
fusion of a dimer~two-atom molecule! in the 1D sinusoidal
potential. We find an analytical solution for the overdamp
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case and analyze numerically the dependence of diffus
coefficient on the damping constanth. The numerical results
were obtained with the Verlet algorithm by calculating t
trajectoryx(t) and then splitting it intoNtr pieces, each with
a time durationt. The diffusion coefficient was then calcu
lated asD5^Dx2&/2t.

The paper is organized as follows. In Sec. II we obtain
analytical expression for the diffusion coefficient in the ove
damped limit. In Sec. III A we analyze the case of pure e
tropic barriers. In Sec. III B the activated diffusion of
single atom is studied. In Sec. III C the diffusion of a dim
is described. Finally, Sec. IV concludes the paper.

II. OVERDAMPED LIMIT

Consider a particle moving in theN-dimensional externa
potentialVN(x,y1 , . . . ,yN21) which is periodic in thex di-
rection,

VN~x1a, . . . !5VN~x, . . . !, ~4!

and grows unboundently in the otherN21 dimensions,

VN~x,y1 , . . . ,yN21!→1

2
v i

2~x!yi
2 if yi→6`, ~5!

wherev i(x).0 for all x.
In the presence of viscous friction, the particle moti

should be diffusive on long time scales. The diffusion co
ficient D can be found with the Einstein relationD5Tm,
where the mobilitym describes the proportionality betwee
the linear currentj and the infinitesimal external dc forcef
which causes this current,j 5m f . Therefore, we have to con
sider the particle motion in the external potential,

Vf~x,y1 , . . . ,yN21!5VN2 f x, ~6!

and then take the limitf→0.
In the overdamped case, when the friction coefficienth is

much larger than the characteristic system frequencies,
motion of the particle is described by the Smoluchow
equation

]W

]t
1¹W •JW50, JW52h21~W¹W Vf1T¹W W!, ~7!

where W(x,y1 , . . . ,yN21 ;t) is the distribution function,
JW (x,y1 , . . . ,yN21 ;t) is the density of the particle’s curren
and the particle mass and Boltzmann constant are pu
unity, m51 andkB51.

For a steady state, Eq.~7! takes the form

T
]W

]x
1W

]Vf

]x
52hJx ~8!

for thex component, and a similar form for other degrees
freedom. The densityJW of the current should satisfy th
equation
2-2
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]Jx

]x
1(

i 51

N ]Jyi

]yi
50. ~9!

To reduce notation, below we consider the case ofN52
only; generalization to theN.2 case is simple. Let us intro
duce the one-dimensional density and current as

r~x!5E
2`

1`

dy W~x,y!, ~10!

j ~x!5E
2`

1`

dy Jx~x,y!. ~11!

Owing to condition~5!, the currentj (x) does not depend
on x,

d j~x!

dx
52Jy~x,1`!1Jy~x,2`!50, ~12!

where we have used Eq.~9!. Thus, integrating both parts o
Eq. ~8! over y, we obtain the one-dimensional equation

T
dr~x!

dx
1r~x!

dVF~x!

dx
52h j , ~13!

where we introduce the potentialVF(x) defined by the equa
tion

dVF~x!

dx
5@r~x!#21E

2`

1`

dyW~x,y!
]Vf~x,y!

]x
. ~14!

Now, if VF(x) may be presented in the form

VF~x!5VN~x; f !2 f x, ~15!

whereVN(x; f ) is a periodic function ofx, Eq. ~13! takes the
form studied in@8#, and the diffusion coefficient can be ca
culated as

D5D f~ I 1I 2!21, I 6~T!5~2p!21E
0

2p

dx e6Veff(x)/T,

~16!

whereD f5T/h andVeff(x)5 lim
f→0

VN(x; f ). Thus, the dif-

fusion coefficientD is determined by the one-dimension
function VN(x;0). In the limit f→0 we may substitute the
equilibrium distribution functionW5Weq} exp(2VN /T) into
Eq. ~14!, thus obtaining

dVeff~x!

dx
5

E
2`

1`

dy e2VN(x,y)/T]VN~x,y!/]x

E
2`

1`

dy e2VN(x,y)/T

. ~17!

We emphasize that this is the key approximation which
rigorous in the overdamped limit only. For the underdamp
case, h→0, a similar multiplicative separation in th
01110
s
d

Fokker-Planck-Kramers equation, W(x,y,vx ,vy , f )
}W(x,vx , f )Weq(y,vy), does not work even in thef→0
limit.

Let VN(x,y) take the form

VN~x,y!5V~x!1U~y!1v~x,y!, ~18!

where the functionv(x,y) describes the coupling betwee
the two degrees of freedom. Then the effective poten
Veff(x) can be presented in the form

Veff~x!5V~x!2TS~x,T!, ~19!

where the ‘‘entropy potential’’S(x,T) is defined by the ex-
pression

S~x,T!5 ln E
2`

1`

dy exp$2@U~y!1v~x,y!#/T%. ~20!

Notice thatS(x) does not depend onV(x).

III. APPLICATIONS

A. Pure entropy barriers

Let V(x)50 in Eq. ~18!,

U~y!5
1

2
mv1

2y2, ~21!

and

v~x,y!5
1

4
m~v2

22v1
2!~12 cosx!y2, ~22!

so that the atomic motion is inactivated in thex direction, but
the frequency of transverse oscillation depends onx, v
5v1 at x50, andv5v2 at x5p. Then the integral in Eq.
~20! can be easily evaluated analytically, and the entro
potential is given by the expression

S~x!52
1

2
lnH 11

1

2 F S v2

v1
D 2

21G~12 cosx!J . ~23!

Notice that the entropy potential~23! does not depend on
temperature, because both potentials~21! and~22! depend on
y in the same way (}y2). The functionS(x) is shown in Fig.
1. It is periodic with the perioda52p and the height«S
5uln(v2 /v1)u. The diffusion coefficient is given byD
5D fF, where the entropy factorF depends on the ratio o
frequenciesz5v2 /v1 only,

F~z!5@ I 1~z!I 2~z!#21, ~24!

where

I 6~z!5p21E
0

p

dxF11
1

2
~z221!~12 cosx!G61/2

.

~25!

Equations~24,25! yield
2-3
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O. M. BRAUN PHYSICAL REVIEW E 63 011102
F~z!5~p/2!2K21~A12z2!E21~A12z2!,

where K is the complete elliptic integral of the first kind
Near z'1 the functionF(z) has the expansionF(z)'1
2 1

8 (12z)2, while at z→0 it behaves as F(z)
'(p/2)2 ln21(4/z). The functionF(z) is presented in Fig. 2
One can see that in the overdamped limit, the effect of
tropy barriers is not very strong, in particular, even f
v1 /v250.1 the diffusion coefficient decreases compa
with the free-diffusion value by a factor ofF(0.1)'0.66
only. Indeed, although the height«S tends to infinity atz
→0, the widths of the barriers become very narrow and t
cannot exert much influence on the diffusion coefficient.

Conversely, in the underdamped case the role of the
tropy barriers is essential. The dependence of the diffus
coefficient on the damping constanth was obtained numeri
cally and shown in Fig. 3. One can see that the funct

FIG. 1. Entropy potentialS(x) for pure entropic barriers with
v1 /v250.01 ~dotted curve!, v1 /v250.1 ~solid curve!, and
v1 /v250.7 ~dashed curve! respectively.

FIG. 2. Entropy factorF(v1 /v2) for pure entropy barriers in
the overdamped limit.
01110
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D(h) exhibits a typical behavior of activated diffusion (D
}h21 at small and large frictions with a crossover betwe
the limits! as might be expected from the shape of the
tropy potentialS(x) of Fig. 1. In the overdamped limit the
average jump length is equal to the period of the poten
S(x), l'2p, while in the underdamped limit long jump
with l/2p@1 play the dominant role as shown in Fig. 4~in
these simulations we assumed that the atom is trapped
given well if it has sojourned in this well for a time perio
not shorter than (2h)21 @1,21#!. The effect of entropy barri-

FIG. 3. Diffusion coefficientD/D f ~whereD f5kBT/mh) as a
function of the friction coefficienth for pure entropic barriers with
v150.1 and v251 at T51. Inset: dependence on temperatu
(T51/3, 1, and 3! for h50.05~up triangles!, 0.5~diamonds!, and 5
~down triangles!.

FIG. 4. Distribution of jump length for pure entropic barrie
with v150.1 andv251 at T51 for ~a! the overdamped case (h
51) and~b! the underdamped limit (h51023).
2-4
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ROLE OF ENTROPY BARRIERS FOR DIFFUSION IN . . . PHYSICAL REVIEW E63 011102
ers is even stronger than might be expected from the ana
with the energy barriers of the same height. For example,
the frequenciesv1 /v250.1 used in the simulation, th
height of the barrier is«S5S(p)'2.3, which would yield
the ratioD(h→`)/D(h→0)'2«S /kBT'4.6 for theT51
case, while the simulation leads to the ratioD(h→`)/D(h
→0).33. From Fig. 4~b! one can see that^l/2p&'102 for
the case ofh51023, while for the one-dimensional diffu
sion it should be^l/2p&;h215103. Thus, multidimen-
sional effects result in a significant reduction of the jum
length in the underdamped limit, which leads to a decreas
the diffusion coefficient compared with the 1D motion. No
also that the dependence on temperature~shown in inset of
Fig. 3! is almost negligible, as should to be expected for
entropy potential.

B. Atom in a corrugated channel

Allow now that the dependence of the external poten
VN(x,y) on y is still given by Eqs.~21! and~22!, but motion
in the x direction is activated,

V~x!5
1

2
«~12 cosx!, ~26!

where« is the height of the external potential. At the minim
of the potential~26!, the transverse vibrations are charact
ized by the frequencyv1, while at the saddle points, they a
characterized by the frequencyv2. In the one-dimensiona
case, as well as for the 2D case withv15v2, in the over-
damped limit we have, according to Eq.~1!, DSmoluchowski

5D fI 0
22(«/2T). Because the entropy potentialS(x) does

not depend on the functionV(x), it is still given by Eq.~23!,
and the integral~16! can be easily evaluated. The results f
the overdamped limit are shown in Fig. 5, which can
compared with the simulation results for different degrees

FIG. 5. Activated diffusion with barrier«52: D @normalized on
the Smoluchowski value~1!# versus the ratio of transverse freque
ciesz5v2 /v1 in the overdamped limit for temperaturesT53 ~dot-
dashed curve!, T51 ~dashed curve!, T51/3 ~solid curve!, and T
51/9 ~dotted curve!. The short-dashed line shows the TST appro
mation.
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friction presented in Figs. 6 and 7. From theD(T) depen-
dence of Figs. 5 and 6, one can see that at high temperat
when the motion is deactivated, thev15v2 case leads to the
maximum of the diffusion coefficient, similarly to the cas
with pure entropic barriers. With decreasing temperature,
energy barriers and the entropy barriers play ‘‘in phase’’
the narrow-barriers case ofv1,v2, and ‘‘in antiphase’’ for
the wide-barriers case ofv1.v2. At low temperaturesD
.D1D for the case ofv1.v2 at high and moderate degree
of friction, in agreement with predictions of the TST a
proach. The effect, however, is smaller than the TST p
dicts: in our simulation, we found that the diffusion coef
cient changes only three times when the ratio of frequen
is equal to ten. At very low

-

FIG. 6. D versusT for activated motion with barrier«52 for
three values of transverse frequency~open diamonds and solid
curves forv15v251.0, down triangles and dotted curves for wid
barriers withv151.0 andv250.1, and up triangles and dashe
curves for narrow barriers withv150.1 andv251.0) for three
values of external damping:~a! h50.05, ~b! h50.5, and~c! h
55.

FIG. 7. Diffusion coefficientD @normalized on the Smolu-
chowski value~1!# as a function of friction coefficienth for acti-
vated motion with barrier«52 at T51/3 for three values of trans
verse frequency:~1! v15v251.0 @open diamonds; the dotte
curves show the 1D approximate valuesD'(v0/2p)Aa2B(h) and
D'pD fA/2 at high and low friction, respectively#, ~2! v151.0 and
v250.1 ~down triangles, wide barriers!, and ~3! v150.1 andv2

51.0 ~up triangles, narrow barriers!. The dashed curves show the fi
D(h)}h21/3.
2-5
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O. M. BRAUN PHYSICAL REVIEW E 63 011102
friction ~e.g., h,1022 in Fig. 7!, the entropy barriers be
come more important than the energy barriers, and the
fusion coefficient again becomes smaller than the 1D one
all cases ofv1Þv2, as it was for the case of pure entrop
barriers. For moderate and low friction the simulation resu
of Fig. 7 can be fitted by a dependenceD(h)}h21/3. Be-
cause the escape rateR is still proportional toh in the mul-
tidimensional case@22#, we may conclude that in the prese
case, the average jump length scales as^l&}h22/3, which is
in agreement with the results for pure entropic barriers p
sented in the preceding subsection, and also may be c
pared with the 1D laŵ l&}h21 and the 2D simulation re
sult @18# ^l&}h23/4. Thus, in the underdamped limi
multidimensional effects lead to decreasing diffusivity~com-
pared with the 1D case! due to a reduction in jump length
which scales aŝl&}h22/3 instead of the 1D scaling law
^l&}h21.

C. Diffusion of the dimer

Now we can study diffusion of a dimer in the 1D sin
soidal potential. Letx1 and x2 be the coordinates of two
atoms coupled by the elastic spring with the constantg, and
a0 be the equilibrium distance (0<a0<p). Then the Hamil-
tonian of the system takes the form

H5
1

2
maẋ1

21
1

2
maẋ2

21
1

2
«s~12 cos 2px1 /as!

1
1

2
«s~12 cos 2px2 /as!1

1

2
g~x22x12a0!2. ~27!

In what follows, we put«s52, ma51, as52p, and in the
present paper we consider the case ofa050 only. Introduc-
ing the coordinatesx5x11x2 and y5x22x1, the Hamil-
tonian ~27! can be rewritten as

H5
1

2
m~ ẋ21 ẏ2!1VN~x,y!;

VN~x,y!5
1

2
«S 12 cos

x

2
cos

y

2D1
1

2
gy2, ~28!

which describes the motion of one particle of massm
5ma/251/2 in the x-periodic potential of height«52«a
54 and perioda52as54p.

The adiabatic trajectory for this system was studied
@20#. Its shape depends on a value of the elastic constag.
The points (x,y)5(4pn,0), wheren is an integer, always
correspond to the absolute minimum of the potential ene
Near the minimum, the potential energy has the expans
VN(x,y)' 1

2 m(v0x
2 x21v0y

2 y2) with v0x51 and v0y5(2g
11)1/2. For a strong spring,g>1/2, there is only one saddl
point at (xs ,ys)5(2p,0) between two adjacent minim
(0,0) and (4p,0). Near the saddle, the potential energy h
the expansion

VN~x,y!'«s1
1

2
m@2vsx

2 ~x2xs!
21vsy

2 ~y2ys!
2#, ~29!
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with vsx51 andvsy5(2g21)1/2, so that the activation en
ergy for dimer motion is equal to«s5«54 ~see Fig. 8!.
Therefore, dimer diffusion can be roughly described as
motion of one atom in the corrugated periodic potential w
the transverse frequenciesv1,25(2g61)1/2, i.e., it corre-
sponds to the case of wide barriers studied in the prece
subsection. Thus, although the shape of adiabatic trajec
does not depend on the elastic constant for the case of st
coupling, the diffusion coefficient does depend ong; it in-
creases wheng→1/2 due to the decreasing of the transve
curvature at the saddle point. The simulation results of Fig

FIG. 8. ~a! Activation energy«s and ~b! ratio of frequencies at
the saddle and minimum points as functions of the elastic cons
g for dimer diffusion.

FIG. 9. Dependence of diffusion coefficientD ~timesh) on the
elastic constantg at T51 for different values of the damping con
stant:h55 ~dotted diamonds!, h50.5 ~open diamonds!, h50.05
~solid diamonds!, and h50.005 ~crossed diamonds!. The dotted
curve and cross-hatched diamonds show the simulation result
the ‘‘atom in channel’’ model withh55 and other parameters ad
justed to the dimer case.
2-6
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show that the harmonic approximation describes theD(g)
dependence with a good degree of accuracy. From Fig.
where the ratioD(g)/D(0) is presented for different tem
peratures, one can see also that close to the critical poig
51/2, when anharmonicity of transverse vibrations at
saddle point is large, the entropy factor strongly depends
T, especially at low temperatures.

For intermediate values of the elastic constant, 1/p<g
,1/2, the adiabatic trajectory still has only one saddle po
(2p,ys) between the adjacent minima, whereys is now a
solution of the equation sin(ys/2)5gys . Near the saddle, the
potential energy has the expansion~29! with frequencies
vsx5@12(gys)

2#1/4 and vsy5(2g2vsx
2 )1/2. The saddle is

characterized by the energy«s(g)5 1
2 «@11 cos(ys/2)#

1 1
2 gys

2 , so that 21p/2,«s,4.
Finally, for a weak coupling between dimer atoms,g

,1/p, there are two saddle points between the adjac
minima (0,0) and (4p,0), with a local minimum of the po-
tential energy between these saddle points. The coordin
of the saddle points are (2p2x8,p) and (2p1x8,p),
where x852 cos21(gp). These saddle points are charact
ized by the energy«s(g)5 1

2 («1gp2), so that 2,«s,2
1p/2. Near the saddle, the potential energy has the exp
sion ~29! with coefficients vsx5(g2G)1/2 and vsy5(g
1G)1/2, whereG5@12(p221)g2#1/2.

The whole dependence«s(g) is shown in Fig. 8~a!. The
activation energy monotonically increases from the sing

FIG. 10. RationD(g)/D(0) as a function of the elastic consta
g for the dimer diffusion ath50.05 and different temperaturesT
53,1,1/2, and 1/3.
01110
0,

e
n

t

nt

tes

-

n-

-

atom value«s52 at g50 to the rigid-dimer value«s54 at
g51/2 and then remains constant. Thus, one could exp
that the diffusion coefficient should monotonically decrea
with increasingg. However, the simulation results of Fig. 1
show that often this is not true. The peculiarity in the tran
verse frequencies at the pointg51/2, where the saddle trans
verse frequency reaches zero, leads to a maximum of
function D(g) close to this point if the damping is smal
h&0.5, and the temperature is not too low,T*1 ~recall that
«54). Thus, multidimensional effects may strongly affe
dimer diffusivity.

IV. CONCLUSION

In the present paper we studied in detail the diffusion o
particle in two-dimensional space which is periodic alongx
and unbounded in the transverse direction. We calculated
entropy factor that emerges due to the transverse degre
freedom, both in the overdamped limit~analytically! and in
the underdamped case~numerically!, and compared it with
the prediction of the transition-state theory. We showed t
in the underdamped limit, the multidimensional effects le
to a reduction~compared with the one-dimensional motio!
in jump lengths between subsequent trappings of the ato
the minima of the external periodic potential. The simulati
predicts that jump lengths scale as^l&/^l1D&}h1/3. This
leads to a decrease in diffusivity, which now scales asD
}h21/3 instead of the 1D dependenceD1D}h21.

In the overdamped limit, the entropy factor~and, there-
fore, the prefactor in the Arrhenius formula for activate
diffusion! does not depend on temperature as long as
transverse motion near the adiabatic trajectory can be
scribed by the harmonic approximation. Simulation sho
that this remains true, at least approximately, for low dam
ing as well. Thus, in most cases the experimentally obser
dependence of the prefactor on temperature must be at
uted to collective effects due to interaction between diffus
particles or/and between the atom and~deformable! sub-
strate. However, in the case of dimer diffusion at some va
of the interaction between the atoms, when the saddle tr
verse frequency is equal to zero, the anharmonicity of
transverse potential begins to play the important role and
entropy factor strongly depends onT.
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