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Role of entropy barriers for diffusion in the periodic potential

O. M. Braurf
Institute of Physics, National Ukrainian Academy of Sciences, 03650 Kiev, Ukraine
(Received 31 July 2000; published 18 December 2000

Diffusion of a particle in theN-dimensional external potential which is periodic in one dimension and
unbounded in the othéd — 1 dimensions is investigated. We find an analytical expression for the overdamped
diffusion and study numerically the cases of moderate and low damping. We show that in the underdamped
limit, the multidimensional effects lead to a reducti@@mpared to the one-dimensional modiam the jump
lengths between subsequent trappings of the atom at the minima of the external periodic potential. As an
application, we consider the diffusion of a dimer adsorbed on the crystal surface.
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. INTRODUCTION J(h)=[3duu % 2"uE~Y(y), and E(u) is the complete
_ _ _ _ elliptic integral of the second kind. At low temperatures,
':‘\j\/lagety of phenomena in physics and otlher fle:jds can bg,T<eg, both expressiongl) and (2) take the Arrhenius
modeled as Brownian motion in an external periodic poteny, .. p=BA with A= exp(—&/ andD~ w2a2/2m 7 in
tial [1-3]. One particular example, the surface diffusion of ' PCslkeT) 0 i
atoms or small clusters, is of great fundamental and techng- - _ 12 ; )
logical interesf4]. During crystal growth, the deposited at- Cbptepﬂal ar.1dw0' _(ZW/a)(S/Z,r.n l N th? frequency_of_ 0s
oms diffuse over the surface until they become incorporated!lation at its minimunj, andD~mD/2 in the low-friction
into the lattice. On the semiconductor(BI0) or G&100) |m|t_. In ger_1era|, th_e diffusion co_efflment can be _found nu-
surface, most of the deposited Si or Ge atoms combine tmencally with pract_lcally any d.eS|red accuracy using the ma-
form dimers, and the diffusion of such dimers has recentlyifix continued-fraction-expansion methpd].
been studied experimentally by scanning tunneling micros- At low temperatureskgT<e, when the diffusion pro-
copy [5]. Moreover, atoms adsorbed on metal surfaces iff€€ds by uncorrelated thermally activated jumps over the
some cases form closely packed islands that diffuse as R@rier from one minimum of the external potential to an-
whole[6,7]. other, t2he diffusion _coefﬁment may be presente_d.as
Theoretically, the problem of diffusion can be described=RA\), whereRA s the rate of escape from a minimum
by a Langevin equation for the atésh or, equivalently, a of the external potential an¢h<) is thg mean-square jump
Fokker-Planck-Kramers equation for the distribution func-€ngth. For moderate or large dampingz= wo, when only
tion in the phase spadé,2]. In the trivial case of Brownian JUmps for one period of the external potential are possible,
motion without the external potential, the diffusion coeffi- On€ should takex=a and R=Rrs1B(7), where Rrgr
cient is equal taD =D;=kgT/m7, wherekg is the Boltz- = @o/27 is the escape rate given by t2he trlz/aznsmor_\ state
mann constantT is the temperaturen is the particle mass, theory(TST) [2,9], and the factoB(z)=(z"+1)""—z with
and 7 is the viscous damping coefficient that models theZ= 7/2ws provides an interpolation between the TST and
energy exchange with the substréteermostat For a single ~ 0verdamped limits, as was found by Kramgt6] [herews is
atom in the one-dimension4lD) sinusoidal externajsub- ~ the “saddle” frequency at the saddle poimt=xs, near
strat§ potential, the value of diffusion coefficient is well Which the external potential has the forv(x)~e

the high-friction casdherea is the period of the substrate

known as summarized in the Risken monogrfiph Exact ~ — 3Mw3(X—Xg)?; for the sinusoidal potentiabs= wo]. The
results exist for the overdampe@moluchowski case, 7 underdamped limity<wg, is qualitatively different: in this
—, when[8] caseR~2ne/wkgTx 5, as was found first by Kramef40],
but the average jump length divergeshasy 1. Thus, this

D=Dsly%(h), (1) again leads to the dependenBa?e= 71, similarly to the

overdamped case. The occurrence of long jumpsa, has
where h=¢/2kgT, ¢ is the (total) height of the substrate been observed in a number of experiments on surface diffu-
potential, and y(h) is the modified Bessel function, and in sion [4,11]. The interval from low to moderate friction is

the underdamped limity— 0 when[1] covered by the Mel'nikov-Meshkov formuld 2]
- 1
D=D;G(h), @ 1 (- In|1— ex;{—A u?+ 7
where Rum~ Rrstexp ;fo du , 1 )
uc+ Z
G(h)=(h/2m)Y%" ;1 (h)J(h), @
where A=8hn/wy. Thus, the whole interval of frictions
*Electronic address: obraun@iop.kiev.ua may be described by the interpolation formulR
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~RymB(7), which was checked numerically [13]. Com- case and analyze numerically the dependence of diffusion

bining this expression foR with the numerically calculated coefficient on the damping constant The numerical results

values ofD, one can find the distribution of jump lengths were obtained with the Verlet algorithm by calculating the

[14]. Note that the widely used TST expressidd trajectoryx(t) and then splitting it intd\;, pieces, each with

~Rrs7AaZ, where the diffusion coefficient does not dependa time durationr. The diffusion coefficient was then calcu-

on the damping coefficient, operates in fact for a narrowlated asD =(Ax?)/27.

interval of friction close to the pointy~ wy only (which, The paper is organized as follows. In Sec. Il we obtain the

fortunately, often corresponds to experimental situajions analytical expression for the diffusion coefficient in the over-
Although the results described above for one-dimensionaflamped limit. In Sec. Ill A we analyze the case of pure en-

diffusion are very important and often lead to reasonabldropic barriers. In Sec. Ill B the activated diffusion of a

estimations for experimentally measured diffusion coeffi-single atom is studied. In Sec. Il C the diffusion of a dimer

cients, in real systems the motion always takes place in & described. Finally, Sec. IV concludes the paper.

N>1 configurational space. Indeed, even for diffusion of a

single atom adsorbed on a crystal surfables2 at least. Il. OVERDAMPED LIMIT

Besides, the diffusing object may have internal degrees of

freedom. Multidimensional effects modify both the escape Consider a particle moving in th¥-dimensional external

rate R and the jump length.. The escape rate can be pre- potentialVy(x,ys, ... yn-1) Which is periodic in thex di-

sented aR=R;pF, where the coefficienf is known as the rection,

“entropy factor” [15]. The value ofF can be found with the

help of transition state theory9], which yields F Vn(X+a, ...)=Vn(X, ...), (4)

~ (Il we;)/ (ITjws ), Wherewg; are the frequencies at the _ _ )

minimum andws; are the saddle frequencies for all degrees@nd grows unboundently in the othir—1 dimensions,

of freedomi except the one given along the diffusion path. In

this approachk can be interpreted &= exp(ASkg), where

AS is the difference in entropy between the saddle and

minimum-energy configurations. The entropy factor is often

used to explain the “compensation effedi], when during  wherew;(x)>0 for all x.

an experiment one observes that a decrease in the activation In the presence of viscous friction, the particle motion

energy(calculated as a slope of the Arrhenius plot oDIn  should be diffusive on long time scales. The diffusion coef-

versusT 1) is compensated by a decreasing of the prefactorficient D can be found with the Einstein relatidd=T,

As for the jump length, while fom= w it still is given by  where the mobilityx describes the proportionality between

A=a, in the underdamped limit it is modified qualitatively the linear currenf and the infinitesimal external dc forde

compared with the one-dimensional case. In multidimenwhich causes this currerjt= uf. Therefore, we have to con-

sional space, the path connecting adjoining minima of thesider the particle motion in the external potential,

external potential may not coincide with the direction of easy

crossing at the saddle point. Therefore, the probability of Vi(X,Y1, -« Yno1)=Vn— X, (6)

deactivation during long jumps is enhanced, leading to a re-

duction in the jump lengthA <\;p [16-18. In particular, and then take the limit—0.

for the 2D-periodic substrate potential with square symme- In the overdamped case, when the friction coefficigns

try, it was found numerically{18] that D% %% which  much larger than the characteristic system frequencies, the

givesoc 5707 motion of the particle is described by the Smoluchowski
The multidimensional effects are also important in theequation

diffusion of molecules or small clusters: even for diffusion in

1 .
VNOGYL - - Y- )5 0 0y i YT, (5)

the 1D periodic potentiale.g., along “channels” on fur- oW . . - PP -

rowed or stepped surfagesne has, for the diffusion of the EJFV“]:O’ J=—7"(WVV+TVW), @)
dimer, N=2 at least. Diffusion of the dimer was studied

numerically by Vollmer[19] with the help of the matrix \here W(X,y1, ... Yn_1:t) is the distribution function,

continued-fraction-expansion technique. The adiabaticall)j*
SfIOW motion ofalmear molecule in th? 1D'S|nu5'0|dal pOten'and the particle mass and Boltzmann constant are put to
tial was analyzed ifi20], where the adiabatic trajectory was unity, m=1 andkg=1
. . . . y - B— +-

fou_nd for a ge_neral case. Thl; made it possible to find the For a steady state, E7) takes the form
activation barriers and the minimum-energy and saddle-state
frequencies and then to estimate the diffusion coefficient.

. . - oW 9V

The aim of the present paper is to study the multidimen- T—+W—=—pJ, (8)

sional effects in the diffusion processes. We consider two Ix IX
typical examples: motion of a single atom in a channel that is o
periodic in one dimension and parabolic in others, and diffor thex component, and a similar form for other degrees of
fusion of a dimer(two-atom moleculgin the 1D sinusoidal freedom. The density] of the current should satisfy the
potential. We find an analytical solution for the overdampedequation

(X, Y1, - - - Yn_1:t) is the density of the particle’s current,
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AN N ain Fokker-Planck-Kramers equation, W(X,y,vy,vy,f)
—+2, —=0. 9 cW(X,v4,f)Wey,vy), does not work even in thé—0
ox 1510y limit.

To reduce notation, below we consider the casél ef2 Let Vy(x,y) take the form

only; generalization to thél>2 case is simple. Let us intro- V(X Y)=V(x)+U(y)to(Xx,y), (18
duce the one-dimensional density and current as
. where the functiorv(x,y) describes the coupling between
p(x):J dy W(x,y) (10) the two degrees of freedom. Then the effective potential
—e o Vei(X) can be presented in the form

+oo Veir(X)=V(X)—TSX,T), (19
0= dy sy, 1

where the “entropy potential’S(x,T) is defined by the ex-

Owing to condition(5), the currentj(x) does not depend pression

On X, + o
S(x,T)= Inj dyexp{—[U(y)+v(x,y)]/T}. (20
dj(x) o

dx

=—Jy(X,+ %)+ Jy(x,—*)=0, (12
Notice thatS(x) does not depend ow(X).

where we have used EP). Thus, integrating both parts of

Eq. (8) overy, we obtain the one-dimensional equation Ill. APPLICATIONS

A. Pure entropy barriers

[Gp0 Ve 13 o
O TP X i 7], Let V(x)=0 in Eq.(18),
1
where we introduce the potentid|(x) defined by the equa- U(y)= Emwfyz, (21
tion
d
dVe(x) L[t Vi(xY) an
ax LP(X¥] f_w dyWx,y) —>— (14 1
v(X,y)= Zm(wg—wf)(l— cosx)y?, (22)

Now, if Vg(x) may be presented in the form

so that the atomic motion is inactivated in thdirection, but
the frequency of transverse oscillation depends xpnw
=w, atx=0, andw=w, atx= . Then the integral in Eq.
(20) can be easily evaluated analytically, and the entropy
potential is given by the expression

VE(X)=V(X;f)—fX, (15

whereVy(x;f) is a periodic function ok, Eq.(13) takes the
form studied in[8], and the diffusion coefficient can be cal-
culated as

w2

2
—) —1}(1— cosx)}. (23

(05}

l—l—l
2

27 __ -
D=Dy(I.1-)7%, |¢(T)=(27T)_1f dx e Ver(/T Sx)==5In
0

(16) Notice that the entropy potenti@23) does not depend on

) . temperature, because both potent{2ly and(22) depend on
fﬁoVN(X'f)' Thus, the dif- y in the same way%y?). The functionS(x) is shown in Fig.
fusion coefficientD is determined by the one-dimensional 1. It is periodic with the perioch=27 and the heightg
function V(x;0). In thelimit f—0 we may substitute the =|In(w,/w;)|. The diffusion coefficient is given byD

whereD;=T/7n andV(x)=lim

equilibrium distribution functioWW= W< exp(—Vy/T) into =D¢F, where the entropy factdf depends on the ratio of
Eq. (14), thus obtaining frequenciez= w,/w, only,
+ oo = -1
f dy & WDV, (g% F2)=[1.(21 (217 (24
dVef‘f(X) - h
e (170  where

+ e
f dy e—VN(x,y)/T

— o0

*1/2

It(z)=7-r‘1fwdx 1+ %(22—1)(1— cosX)
0

We emphasize that this is the key approximation which is (25)
rigorous in the overdamped limit only. For the underdamped
case, n—0, a similar multiplicative separation in the Equations(24,25 yield
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FIG. 1. Entropy potentiaB(x) for pure entropic barriers with
w1/w,=0.01 (dotted curvgé w;/w,=0.1 (solid curvg, and
w1 /w,=0.7 (dashed curverespectively.

F(z)=(m/2)°K " Y(J1-Z2)E Y(J1-2°),

whereK is the complete elliptic integral of the first kind.
Near z=1 the functionF(z) has the expansiofr(z)~1
—-%(1-2)% while at z—0 it behaves as F(2)
~(m/2)? In"Y(4/z). The functionF(z) is presented in Fig. 2.
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10 e T
[ Pure entropic barriers: ® /w,=0.1

theory (overdamped)
| —— simulation (T=1)

D/D,

10" £

10°

FIG. 3. Diffusion coefficientD/D; (whereD;=kgT/mz) as a
function of the friction coefficient; for pure entropic barriers with
w1=0.1 andw,=1 at T=1. Inset: dependence on temperature
(T=1/3, 1, and 3for »=0.05(up triangleg, 0.5(diamond$, and 5
(down triangles

D(#n) exhibits a typical behavior of activated diffusiol (

« 5~ 1 at small and large frictions with a crossover between
the limits) as might be expected from the shape of the en-
tropy potentialS(x) of Fig. 1. In the overdamped limit the
average jump length is equal to the period of the potential

One can see that in the overdampe_d Iimit,_ the effect of enS(X), \~2, while in the underdamped limit long jumps
tropy barriers is not very strqng, in particular, even for ith N/27w>1 play the dominant role as shown in Fig(i4

w1 /w,=0.1 the diffusion coefficient decreases compareqase simylations we assumed that the atom is trapped in a
with the free-diffusion value by a factor d¥(0.1)~0.66 given well if it has sojourned in this well for a time period

only. Indeed, although the height tends to infinity atz -1 0
—0, the widths of the barriers become very narrow and thusnOt shorter than () [1,21)). The effect of entropy barri

cannot exert much influence on the diffusion coefficient.
Conversely, in the underdamped case the role of the en-
tropy barriers is essential. The dependence of the diffusion
coefficient on the damping constantwas obtained numeri-
cally and shown in Fig. 3. One can see that the function

T T -
0,=0.1 o,=1 n=1
<A2r>=1.02

1.0

0.8

10% N
< 06 IZ ) 0,=0.1 o=1 n=10
i N A2m>=13210° ]

~ 10° ¥

q %

3 :%
04 E 10_4 |g

. ,
0.2 = e - - 10-50 200 400 600 800 1000
10° 10° 10 10 "
zZ= ml/(o2 T

FIG. 4. Distribution of jump length for pure entropic barriers
with w;=0.1 andw,=1 atT=1 for (a) the overdamped casey(

FIG. 2. Entropy facto~(w4/w,) for pure entropy barriers in
=1) and(b) the underdamped limitf=10"3).

the overdamped limit.
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FIG. 5. Activated diffusion with barries =2: D [normalized on
the Smoluchowski valuél)] versus the ratio of transverse frequen-
ciesz= w, /w4 in the overdamped limit for temperaturés- 3 (dot-
dashed curve T=1 (dashed curve T=1/3 (solid curvg, and T
=1/9 (dotted curve The short-dashed line shows the TST approxi-
mation.

ers is even stronger than might be expected from the analo

with the energy barriers of the same height. For example, fo

the frequenciesw,/w,=0.1 used in the simulation, the
height of the barrier iss=S(7)~2.3, which would yield
the ratioD(7—=)/D(7—0)~2e5/kgT~4.6 for theT=1
case, while the simulation leads to the rafi¢»— «)/D(#
—0)>33. From Fig. 4b) one can see thah/27)~10? for
the case ofp=10"3, while for the one-dimensional diffu-
sion it should be(\/2mw)~ =10 Thus, multidimen-
sional effects result in a significant reduction of the jump

length in the underdamped limit, which leads to a decrease i

PHYSICAL REVIEW & 011102

Err i
F (2) n1=0.05 3

diffusion coefficient

temperature

FIG. 6. D versusT for activated motion with barries=2 for
three values of transverse frequen@pen diamonds and solid
curves forw; = w,= 1.0, down triangles and dotted curves for wide
barriers withw;=1.0 andw,=0.1, and up triangles and dashed
curves for narrow barriers witlw;=0.1 and w,=1.0) for three
values of external dampinda) #»=0.05, (b) »=0.5, and(c) 7@
=5.

friction presented in Figs. 6 and 7. From tBT) depen-
dence of Figs. 5 and 6, one can see that at high temperatures,
when the motion is deactivated, thg = w, case leads to the

E{gaximum of the diffusion coefficient, similarly to the case

ith pure entropic barriers. With decreasing temperature, the
energy barriers and the entropy barriers play “in phase” for
the narrow-barriers case af;<w,, and “in antiphase” for
the wide-barriers case ab,;>w,. At low temperature
>D,p for the case ofv;> w, at high and moderate degrees
of friction, in agreement with predictions of the TST ap-
proach. The effect, however, is smaller than the TST pre-
dicts: in our simulation, we found that the diffusion coeffi-
cient changes only three times when the ratio of frequencies

ins equal to ten. At very low

the diffusion coefficient compared with the 1D motion. Note L LI
also that the dependence on temperatsh®wn in inset of . _E,s!**
Fig. 3 is almost negligible, as should to be expected for the _10F #,*’ I e
entropy potential. %‘ > = -
B. Atom in a corrugated channel £ 107 III;;E/ SR
P
Allow now that the dependence of the external potential g i »I’i I,fi P
Vn(x,y) ony is still given by Eqs(21) and(22), but motion o, _I I’I ol en
in the x direction is activated, £ 107 I}j‘ o Duamon
= Bt Ve
1 : ,/‘I -- 7 e
V(x)= 58(1_ COsX), (26) 10° F & simusion .
F 1 Ll TR LAl I
wheree is the height of the external potential. At the minima 10° 10? 10" 10
of the potential(26), the transverse vibrations are character- n

ized by the frequency,, while at the saddle points, they are
characterized by the frequenay,. In the one-dimensional
case, as well as for the 2D case with= w5, in the over-
damped limit we have, according to E€L), Dsmoiuchowski
=Dglgy 2(¢/2T). Because the entropy potenti&(x) does
not depend on the functiovi(x), it is still given by Eq.(23),
and the integra(16) can be easily evaluated. The results for

FIG. 7. Diffusion coefficientD [normalized on the Smolu-
chowski value(1)] as a function of friction coefficien for acti-
vated motion with barriee =2 atT=1/3 for three values of trans-
verse frequency(l) w;=w,=1.0 [open diamonds; the dotted
curves show the 1D approximate valu2s: (wq/27)Aa?B(7) and
D~ wD;A/2 at high and low friction, respectively(2) w;=1.0 and
w,=0.1 (down triangles, wide barriersand (3) w;=0.1 andw,

the overdamped limit are shown in Fig. 5, which can be=1.0(up triangles, narrow barriersThe dashed curves show the fit
compared with the simulation results for different degrees ob (7)o« 5.
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friction (e.g., <10 2 in Fig. 7), the entropy barriers be- (a)
come more important than the energy barriers, and the dif- 40 L T
fusion coefficient again becomes smaller than the 1D one for ;
all cases ofw;# w,, as it was for the case of pure entropic 35F E
barriers. For moderate and low friction the simulation results N
of Fig. 7 can be fitted by a dependendé ) . Be- 3’0;_ ]
cause the escape re®eais still proportional ton in the mul- 25F 3
tidimensional casg22], we may conclude that in the present s
case, the average jump length scale$gs- »~ 2, which is 200 " 0. ' ' !
in agreement with the results for pure entropic barriers pre- ’
sented in the preceding subsection, and also may be com-
pared with the 1D law\)= 7! and the 2D simulation re- 1,0
sult [18] (A)x7 ¥ Thus, in the underdamped limit, 08|
multidimensional effects lead to decreasing diffusivitpm- ot
pared with the 1D cagealue to a reduction in jump length, QM 067
which scales ag\ )7~ 2 instead of the 1D scaling law S 04
CVET 02
0,0 . -
C. Diffusion of the dimer 00 02 04 g 06 08 1,0

Now we can study diffusion of a dimer in the 1D sinu-
soidal potential. Letx; and x, be the coordinates of two
atoms coupled by the elastic spring with the constarand
ag be the equilibrium distance @ay=< ). Then the Hamil-
tonian of the system takes the form

FIG. 8. (a) Activation energye and (b) ratio of frequencies at
the saddle and minimum points as functions of the elastic constant
g for dimer diffusion.

with wg,=1 andws,= (29— 1)*2 so that the activation en-
1 ., 1 .1 ergy for dimer motion is equal te;=e=4 (see Fig. &
H =5 mMaX]+5MaX3+ 5 e(1— coSs 2mx; /ay) Therefore, dimer diffusion can be roughly described as the
motion of one atom in the corrugated periodic potential with
the transverse frequencies, .= (2g+1)*? i.e., it corre-

(27)

1 1
+5e5(1- cos 27-rx2/as)+§g(x2—x1—ao)2.

In what follows, we pute;=2, my=1, a;=2, and in the
present paper we consider the casegf0 only. Introduc-
ing the coordinatex=x;+X, and y=x,—X;, the Hamil-
tonian(27) can be rewritten as

1 ..
H=§m(x2+y2)+VN(x,y);

1 X cos |+ Sgy? 28
—coszcosz +§gy, (28)

1
VN(X!y):ES(

which describes the motion of one particle of mass
=m,/2=1/2 in the x-periodic potential of height=2¢,
=4 and perioda=2a,=41r.

The adiabatic trajectory for this system was studied in

[20]. Its shape depends on a value of the elastic congtant
The points &,y)=(47n,0), wheren is an integer, always

correspond to the absolute minimum of the potential energy.

sponds to the case of wide barriers studied in the preceding
subsection. Thus, although the shape of adiabatic trajectory
does not depend on the elastic constant for the case of strong
coupling, the diffusion coefficient does depend gnit in-
creases wheg— 1/2 due to the decreasing of the transverse
curvature at the saddle point. The simulation results of Fig. 9

T T T T T
<4 1=5 (EB)

P — 1]:5

T=1

—x—1=0.005

1.0

Near the minimum, the potential energy has the expansion

Vn(X,Y) =~ 3m(w5,x*+ wf,y?) with we=1 and wo,= (29
+1)Y2, For a strong springg=1/2, there is only one saddle
point at (s,ys)=(2w,0) between two adjacent minima

FIG. 9. Dependence of diffusion coefficieDt(times %) on the
elastic constang at T=1 for different values of the damping con-

(0,0) and (47,0). Near the saddle, the potential energy hasstant:nzs (dotted diamonds 5=0.5 (open diamonds 7= 0.05

the expansion

(29

1 2 2 2 2
VN(va)%‘gS_l—Em[_wsx(X_Xs) +wsy(y_ys) ]a

(solid diamondgs and 7=0.005 (crossed diamonds The dotted
curve and cross-hatched diamonds show the simulation results for
the “atom in channel” model withy=5 and other parameters ad-

justed to the dimer case.
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- r T T 1 atom valuess=2 atg=0 to the rigid-dimer value =4 at
g=1/2 and then remains constant. Thus, one could expect
that the diffusion coefficient should monotonically decrease
with increasingg. However, the simulation results of Fig. 10
show that often this is not true. The peculiarity in the trans-
verse frequencies at the poin 1/2, where the saddle trans-
verse frequency reaches zero, leads to a maximum of the
function D(g) close to this point if the damping is small,
7=0.5, and the temperature is not too |0l 1 (recall that
e=4). Thus, multidimensional effects may strongly affect
dimer diffusivity.

D(g)/D(0)

IV. CONCLUSION

In the present paper we studied in detail the diffusion of a
g particle in two-dimensional space which is periodic along
and unbounded in the transverse direction. We calculated the

FIG. 10. RatiorD(g)/D(0) as a function of the elastic constant entropy factor that emerges due to the transverse degree of
g for the dimer diffusion aty=0.05 and different temperaturds freedom, both in the overdamped linfénalytically and in
=3,1,1/2, and 1/3. the underdamped cagaumerically, and compared it with

the prediction of the transition-state theory. We showed that
show that the harmonic approximation describes {g) in the underdamped limit, the multidimensional effects lead
dependence with a good degree of accuracy. From Fig. 10¢ a reductionicompared with the one-dimensional motion
where the ratioD(g)/D(0) is presented for different tem- in jump lengths between subsequent trappings of the atom at
peratures, one can see also that close to the critical goint the minima of the external periodic potential. The simulation
=1/2, when anharmonicity of transverse vibrations at thepredicts that jump lengths scale &)/(\ip) "% This
saddle point is large, the entropy factor strongly depends oleads to a decrease in diffusivity, which now scalesDas
T, especially at low temperatures. o« Rinstead of the 1D dependenBap 7 .

For intermediate values of the elastic constantr<i{ In the overdamped limit, the entropy facttand, there-
<1/2, the adiabatic trajectory still has only one saddle poinfore, the prefactor in the Arrhenius formula for activated
(27,ys) between the adjacent minima, wheyeis now a  diffusion) does not depend on temperature as long as the
solution of the equation sipg2)=gys. Near the saddle, the transverse motion near the adiabatic trajectory can be de-
potential energy has the expansi¢®9) with frequencies scribeq by the harmonic approximati_on. Simulation shows
we=[1—(gys)?1¥* and wsy:(zg_ng)lﬂ_ The saddle is f[hat this remains true, at least apprOX|mat_er, for low damp-
characterized by the energy(g)=21e[1+ cosfy2)] Ing as well. Thus, in most cases the experimentally observed
+1gy2, so that 2r m/2<e<4. dependence of the prefactor on temperature must be attrib-

Finally, for a weak coupling between dimer atongs, uted to collective effects due to interaction between diffusing

<1/m, there are two saddle points between the adjacerﬁ?""rtiCIeS or/and .between the aj[om a(diafqrmable sub-
minima (0,0) and (4-,0), with a local minimum of the po- strate. However, in the case of dimer diffusion at some value

tential energy between these saddle points. The coordinaté?é the interaction _between the atoms, when the sgd_dle trans-
of the saddle points are ¢2—x',7) and (27+x’,) verse frequency is equal to zero, the anharmonicity of the
where x’ =2 cos Y(gm). These sad,dle points are Ch'ara'cter_transverse potential begins to play the important role and the

ized by the energy<(g)=3%(e+gm?), so that Xe <2 entropy factor strongly depends an
+ /2. Near the saddle, the potential energy has the expan-
sion (29) with coefficients wg,=(g—G)"? and ws,=(g
+G)Y2, whereG=[1—(7?—1)g*]*2 Helpful discussions with T. P. Valkering are gratefully

The whole dependence,(g) is shown in Fig. 8). The  acknowledged. This work was partially supported by the IN-
activation energy monotonically increases from the singleTAS through Grant No. 97-31061.

ACKNOWLEDGMENTS

[1] H. Risken, The Fokker-Planck EquatioriSpringer, Berlin, [5] B. S. Swartzentruber, Phys. Rev. Le6, 459 (1996; W.

1996. Wulfhekel, B. J. Hattink, H. J. Zandvliet, G. Rosenfeld, and B.
[2] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Ph§g, Poelsemaibid. 79, 24949(1997); E. Zoethout, H. J. Zandvliet,

251(1990. W. Wulfhekel, G. Rosenfeld, and B. Poelsema, Phys. Rev. B
[3] V. I. Mel'nikov, Phys. Rep209 1 (199J. 58, 16167(1998; H. J. Zandvliet, T. M. Galea, E. Zoethout,
[4] A. G. Naumovets and Yu. S. Vedula, Surf. Sci. Rép365 and B. Poelsema, Phys. Rev. L&, 1523(2000.

(1989; R. Gomer, Rep. Prog. Phy53, 917 (1990. [6] S. C. Wang and G. Ehrlich, Surf. S&39, 301(1990; G. L.

011102-7



O. M. BRAUN PHYSICAL REVIEW E 63011102

Kellogg, Appl. Surf. Sci.67, 134(1993; S. C. Wang and G. Golovchenko, Phys. Rev. Le#8, 1567(1992; J. Ellis and J.
Ehrlich, Phys. Rev. Lett79, 4234 (1997; S. C. Wang, U. P. Toenniesibid. 70, 2118(1993; D. C. Senft and G. Ehrlich,
Kurpick, and G. Ehrlichjbid. 81, 423(1998. ibid. 74, 294 (1995.

[7] A. F. Voter, Phys. Rev. B4, 6819(1986; C.-L. Liuand J. B. ~ [12] V. I. Mel'nikov and S. V. Meshkov, J. Chem. Phy&5, 1018
Adams, Surf. Sci268 73 (1992; C. Massobrio and P. Blan- (1986.
din, Phys. Rev. B47, 13687 (1993; J. C. Hamilton, M. S.  [13] R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev. A
Daw, and S. M. Foiles, Phys. Rev. Letd, 2760(1995; Clin- 46, R699(1992.

[14] R. Ferrando, R. Spadacini, and G. E. Tommei, Phys. Rev. E
51, 126 (1995.

[15] G. H. Vineyard, J. Phys. Chem. Soli@s121 (1957.

[16] V. P. Zhdanov, Surf. Sci214, 289 (1989.

[17] K. Haug, G. Wahnsinm, and H. Metiu, J. Chem. Phy80, 540
(1989; 92, 2083(1990.

[18] L. Y. Chen, M. R. Baldan, and S. C. Ying, Phys. Rev5&

ton DeW. Van Siclenibid. 75, 1574(1999; S. V. Khare, N.
C. Bartelt, and T. L. Einstein, Phys. Rev. Lef5 2148
(1999; D. S. Sholl and R. T. Skodjebid. 75, 3158(1995.

[8] R. L. Stratonovich,Topics in the Theory of Random Noise
(Gordon and Breach, New York, 1967Yu. M. Ivanchenko
and L. A. Zil'berman, JETP LetB, 113(1968 [JETP Lett.28,
1272(1969]; V. Ambegaokar and B. I. Halperin, Phys. Rev.

8856(1996.
Lett. 22, 1364(1969. . ) [19] H. D. Vollmer, Z. Phys. B33, 103(1979.
[9] S. Glasstone, K. J. Laidler, and H. Eyririthe Theory of Rate [20] O. M. Braun, Surf. Sci230, 262 (1990.
ProcessesMcGraw-Hill, New York, 194). [21] M. Borromeo and F. Marchesoni, Phys. Rev. L&, 203
[10] H. A. Kramers, PhysicéAmsterdam 7, 284 (1940. (2000.
[11] J. W. M. Frenken, B. J. Hinch, J. P. Toennies, and ChlIWo [22] M. Borkovec and B. J. Berne, J. Chem. Phgg, 794 (1985
Phys. Rev. B41, 938 (1990; G. Ehrlich, Surf. Sci.246, 1 84, 4327(1986); 86, 2444(1987; J. E. Straub, M. Borkovec,

(199); E. Ganz, S. K. Theiss, I. S. Hwang, and J. and B. J. Berneibid. 86, 4296(1987.

011102-8



