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Supersonic and multiple topological excitations in the driven Frenkel-Kontorova model
with exponential interaction

O. M. Braun*
Institute of Physics, National Ukrainian Academy of Sciences, 03650 Kiev-39, Ukraine

~Received 23 February 2000!

The criteria for the existence of supersonic and multiple topological excitations~kinks! in the driven
Frenkel-Kontorova model~a chain of atoms placed into an external periodic potential! with anharmonic
~exponential! interatomic interactions are studied.

PACS number~s!: 45.05.1x, 82.20.Mj, 63.20.Ry, 05.60.2k
s-
a
s
t

l
re
F
it
ju

of
bl
n

no

in
ca
nn

nk
w
th
o

lly

p-
ob
f
n
c
ic
e
t

ys
ks

c
uk
p-
ain
in
nks

e

he
ns
el
nd,

to

s

its

ro-
ith

al
I. INTRODUCTION

Topological excitations play a very important role in sy
tem dynamics, because they are responsible for mass
charge transport in solids and on crystal surfaces. As cla
cal examples, one can mention dislocations described by
Frenkel-Kontorova~FK! model @1#, where the topologica
excitations correspond to kinks that describe local comp
sion or expansion of a commensurate structure. The
model has numerous applications in superionic conductiv
surface physics, hydrogen-bonded chains, Josephson
tions, tribology, etc.~e.g., see@2# and references therein!.

In the continuum limit approximation, the equation
motion of the FK model reduces to the exactly integra
sine-Gordon~SG! equation. But in continuum models, eve
in a model with anharmonic~but local! interaction, the topo-
logical excitations are always subsonic, the kink can
propagate with a velocityv larger than the sound speedc
because of Lorentz contraction of kink’s width. Moreover,
the classical FK model, the kinks of the same topologi
charge repel from one another and, therefore, they ca
carry a multiple topological charge.

However, simulation demonstrates that supersonic ki
as well as multiple kinks do exist. For example, Fig. 1 sho
the propagation of supersonic single and double kinks in
FK model with exponential interatomic interaction. The m
tion of topological solitons withsupersonicvelocities was
firstly predicted, to the best of our knowledge, analytica
by Kosevich and Kovalev@3# in the FK model with some
specific interatomic interaction in the continuum limit a
proximation. Later, supersonic topological solitons were
served by Bishopet al. @4# in molecular dynamics study o
polyacetylene. Then the supersonic kinks were studied
merically in the discrete FK model with anharmonic intera
tion by Savin@5#. It was shown that for certain superson
kink velocities, when its width coincides with that of th
corresponding Toda soliton@6#, the kink propagates almos
without energy losses.Multiple fast ~but subsonic! kinks
were firstly observed numerically by Peyrard and Kruskal@7#
in the classical highly discrete FK model. Alfimovet al. @8#
have shown that multiple kinks exist also in continuum s
tems withnonlocal interaction. The bounded states of kin
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~subsonic as well as supersonic! in the case of anharmoni
interaction were also studied numerically by Zolotary
et al. @9#. It was found that these multiple kinks are asym
totically unstable. The dynamics of the generalized FK ch
driven by a dc external force was studied numerically
@10,11#, where we observed the existence of supersonic ki
and multiple~double and triple at least! kinks. Recently, the
existence of multiple kinks for certain kink velocities in th
discreteFK-type model was proven rigorously@12#.

The aim of the present paper is to find the criteria for t
existence of supersonic and multiple topological excitatio
in the FK-type models. We will show that, first, the mod
must bediscreteas was already mentioned above. Seco
because kink’s motion in a discrete chain is damped due
radiation of phonons, we must applya driving forceto sup-
port the motion~this point was lost in the previous studie
@3–5,7–9#!. Third, the interatomic interaction must bean-
harmonic. Under these three conditions, the model adm
both supersonic kinksandmultiple kinks.

The paper is organized as follows. The model is int
duced in Sec. II. Then in Sec. III the problem is studied w

FIG. 1. Atomic trajectories of the FK model with exponenti
interaction forb51/p, g51, andh50.05. ~a! The single super-
sonic kink, f 50.45, vk /c'1.28, and ~b! the double kink, f
50.60, vk /c'1.75.
7315 ©2000 The American Physical Society



a
, t
le
er
he
ly
ia
ac
.
ap
su
k

ly
c
on
ha
a

id

th

ig
i

te

c

i
sy

at

al
te
xi

tio
as

the

-

ue

q.
to

-

idth

f-
.
c-

n-

n-

7316 PRE 62O. M. BRAUN
the help of the continuum limit approximation. We show th
if the discreteness effects are properly taken into account
model formally allows both supersonic kinks and multip
kinks. Moreover, we prove that for a given set of paramet
the model admits either the single-kink solution or t
double-kink solution, but not both solutions simultaneous
Numerical solution of the corresponding ordinary different
equation, which can be obtained with any desired accur
does show the existence of supersonic and multiple kinks
Secs. IV and V we develop an approximate variational
proach that helps to find the conditions for existence of
personic and multiple kinks. We show that supersonic kin
may exist in the model with anharmonic interaction on
and the multiple kinks may be stable for supersonic velo
ties only. These conclusions are confirmed by simulati
Finally, Sec. VI concludes the paper with the comment t
supersonic kinks and multiple kinks may be considered
‘‘disturbed’’ Toda solitons.

II. MODEL

We consider the chain of atoms placed into the sinuso
substrate potential and driven by a dc forcef applied to all
atoms, so that the equation of motion is

ẍl~ t !1h ẋl~ t !1
]

]xl
@V~xl 112xl !1V~xl2xl 21!#1sinxl~ t !

2 f 50, ~1!

wherexl is the coordinate of thel th atom,h is the external
viscous damping coefficient introduced to compensate
driving force, and

V~x!5V0 exp~2bx! ~2!

describes the exponential repulsion between nearest ne
boring atoms. We assume periodic boundary conditions w
the number of atomsN5Ns1p, whereNs is the number of
wells of the periodic potential, so we have one multiplep
kink (p excessive atoms! inserted into the commensura
structure. Similarly, to the Toda model@6#, one may add also
an attractive linear interaction, so that the interaction redu
to the harmonic one in the limitb→0 ~the classical FK
model! and to the hard-core interaction in the opposite lim
b→`. Throughout the paper, we use the dimensionless
tem of units, where the atomic mass ism51, the period of
the external potential isa52p and its amplitude is«52. In
these units, a characteristic frequency of atomic vibration
minimum of the external potential isv051, a characteristic
time scale ist052p, and the maximum value of the extern
dc force, when the minima of the sinusoidal substrate po
tial disappear and the topological excitations cannot e
anymore, isf 51.

III. CONTINUUM APPROXIMATION

The systematic procedure to derive the equation of mo
in the continuum limit starting from the discrete lattice w
proposed by Rosenau@13#. For the anharmonic FK model~1!
t
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it leads, in the first order of the discreteness parameter, to
equation

ü1hu̇2d2u9~12adu8!1sinu2 f

2h2@ ü91~u8!2sinu2u9cosu#50, ~3!

whered5aAg is the width of the static kink,g is the elastic
constant defined asg5V9(a)5V0b2 exp(2ba), the anhar-
monicity parametera is defined as

a52
a

d

V-~a!

V9~a!
5

b

Ag
, ~4!

and the parameterh25a2/125p2/3 describes the discrete
ness effects. Looking for a traveling-wave solution of Eq.~3!
in the formu(x,t)5uk(x2vt)[uk(z), we obtain the equa-
tion

h2v2uk991~c22v22h2cosuk!uk91h2~uk8!2sinuk2ad3uk9uk8

1hvuk82sinuk1 f 50, ~5!

wherec52pAg is the sound speed~in our system of units
c5d).

Although the traveling-wave ansatz may be too crude d
to radiation of phonons by the moving kink@e.g., see Fig.
1~a!#, Kink’s asymptotic can be found with the help of E
~5! rigorously, because the radiation has to decay due
nonzero damping coefficienth in the model under consider
ation. At z→`, substitutinguk(z)2uf}exp(2z/d1) into Eq.
~5!, we obtain for the kink widthd1(v) the equation

d1
4 cosuf1d1

3hv2d1
2~c22v22h2 cosuf !5~hv !2, ~6!

where cosuf5(12f 2)1/2. Similarly, we can find the tail
asymptotic behind the kink,uk(z)2(uf12pp)}exp(z/d2) at
z→2`; the widthd2(v) has to satisfy the same equation~6!
but with v→2v. One can see that at low velocities,uvu!c,
the discreteness effects lead to a decrease of the kink w
in agreement with theory@2#. However, now Eq.~6! has a
solution for any kink velocity v. Thus, the discreteness e
fects remove the restrictionuvu,c of SG-type equations
Now even for the classical FK model with harmonic intera
tion the kink may move with any velocityv.

A kink solution corresponds to a separatrix of the co
tinuum limit equation. To find the separatrix of Eq.~5!, let us
normalize the coordinatez̃5z/d, the velocity ṽ5v/c, and
define the dimensionless discreteness parameterh̃5h/d
51/A12g. Introducing the new variablej5uk( z̃) and the
function w(j)5uk8( z̃), Eq. ~5! can be rewritten as

$h̃2ṽ2@w-~j!w2~j!14w9~j!w8~j!w~j!1@w8~j!#3#

2aw8~j!w~j!1~12 ṽ22h̃2cosj!w8~j!

1~ h̃2sinj!w~j!1h ṽ%w~j!2sinj1 f 50. ~7!

A ~multiple! kink solution has to satisfy the boundary co
ditions uk(2`)5uf12pp, uk(1`)5uf , uk8(6`)50, or
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w~uf12pp!5w~uf !50. ~8!

For example, ifw(j) is a separatrix for the double kink (p
52), it has to connect the points (j5uf14p,w50) and
(j5uf ,w50). However, due to periodicity of the substra
potential, the functionw(j12p) must correspond to the
separatrix solution as well. Thus, on the (j,w) plane the
separatrices of the multiple (p>2) kinks must intersect a
some point withwÞ0. One can show that in the model with
out the discreteness effects,h50, when the phase space
Eq. ~7! is two-dimensional, such intersections are forbidd
@14#. Thus, Eq. ~7! with h50 allows neither supersoni
kinks nor multiple kinks. On the contrary, athÞ0 the phase
space of Eq.~7! is four-dimensional, thus the separatric
corresponded to multiple kinks may not intersect, and m
tiple kinks are allowed in principle@12#. Thus, the discrete
model formally allows both supersonic and multiple top
logical excitations.

Although we cannot find the separatrix solution analy
cally, the ordinary differential equation~7! can be solved
numerically with any desired accuracy. Thus, if one co
find a separatrix solution corresponded to supersonic or m
tiple kink, this will prove their existence. Indeed, looking fo
a separatrix solution numerically for theb51/p and h
50.05 case, we found that at small discreteness,g510, so
that h̃'0.09 anda'0.1, the separatrix solution correspon
to the 2p kink at forces as large asf 50.9, when the kink is
supersonic,vk /c'1.13. On the other hand, for higher di
creteness,g51 so thath̃'0.29, we saw the 2p kink at f
<0.2 when vk /c&1, and the 4p-kink at f >0.6 when
vk /c.1.3.Thus, both supersonic kinks and multiple kinks
exist, at least for some particular choices of model para
eters.

Near kink’s tails, z→6`, e.g., for j5uf12pn1e,
whereueu!1, we can use the expansion

w~j!5a1e1
1

2
a2e21

1

6
a3e31•••, ~9!

wherea1[w8(uf), a2[w9(uf), etc. Substituting this expan
sion into Eq.~7! and grouping together the terms of the sa
power ofe, we obtain the following equation fora1 @cf. with
Eq. ~6!#,

h̃2ṽ2a1
41~12 ṽ22h̃2 cosuf !a1

21h ṽa12cosuf50,
~10!

which always has two roots, one positive and one negat
for any kink velocityv. Then, equating the terms for highe
powers ofe, we obtain the relations that uniquely determi
the coefficientsa2 , a3, etc. Thus, the separatrix solution o
Eq. ~7! is unique, i.e., for a given set of system paramete
the model has either the single-kink solution or the doub
kink one, but never both solutions simultaneously.

Thus, we have demonstrated the existence of supers
and multiple kinks in the driven discrete FK model wi
anharmonic interaction~note that the discreteness of th
model and the anharmonicity of the interaction are the n
essary conditions!. But to find the parameter range for the
existence~the sufficient conditions!, we have to study nu-
n
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merically either the continuum-limit equation~7! or, better,
the original discrete model~1!. The approximate variationa
approach described below essentially simplifies this task

IV. SUPERSONIC KINKS

It is easy to show that in the case off 5h5h50, Eq.~5!
corresponds to an extremum of the following energy fun
tional @15#,

E@u~z!#5E dzFc22v2

2
~u8!22

ad3

6
~u8!32cosuG .

~11!

Substituting a simple SG-type ansatz

uSG~z!54 tan21 exp~2z/deff! ~12!

into Eq. ~11!, we obtain

E~deff!54
c22v2

deff
1

2p

3
a

c3

deff
2

14deff . ~13!

Although the variational approach does not describe
orously the kink tails because of neglecting the discreten
effects, it allows us to find analytically the shape of t
kink’s core and, therefore, to calculate approximately
kink velocity for the model with anharmonic interaction. In
deed, looking for extrema of the functionE(deff), we come
to the equationE8(deff)50, or

k35F12S v
cD 2Gk1

p

3
a, ~14!

where we introduced the new variablek5deff /d. For the
harmonic interaction,a50, Eq. ~14! has a solution foruvu
,c only, which describes relativistic narrowing of the S
kink, k5@12(v/c)2#1/2. But for the anharmonic interaction
a.0, Eq.~14! has a solution foranykink velocity v, includ-
ing supersonic velocitiesuvu.c. We emphasize thatsuper-
sonic excitations are possible for kinks (local compressio
only.

Considering the kink as a rigid quasiparticle, the ki
effective mass can be introduced as~e.g., see@2#!

mk5
1

aE2`

1`

dz@u8~z!#25
4

pdeff
. ~15!

Then, assuming that kink’s parameters at nonzerof andh are
the same as those for thef 5h50 case, the steady-state kin
velocity can be found approximately from the equation

vk5 f /mkh5pc fk~vk!/4h. ~16!

Using Eq.~16!, Eq. ~14! can be rewritten in the form

F11S p f

4h D 2Gk35k1
p

3
a. ~17!

Numerical solution of Eq.~17! allows us to find the function
vk

(var)( f ) that is shown by the dashed curve in Fig. 2 togeth
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with the dependencevk( f ) obtained by solution of the dis
crete equation of motion~1!. One can see that in the anha
monic model we always havevk

(var).c at f→1, and al-
though the simulation velocity is lower thanvk

(var) due to
additional damping of the moving kink because of phon
radiation, the discrete kink still may reach a supersonic
locity. Thus, the variational approach predicts that the sup
sonic kinks may be expected in theanharmonicFK model
only.

Returning back to thediscrete model, note that in the
classical FK model the driven kink cannot reach even
sound velocity, because it exists some critical kink veloc
vc,c above which the driven kink becomes unstable and
system goes to the ‘‘running’’ state, where all atoms mo
with the velocityv' f /h @16#. However, in the anharmoni
FK model, the critical kink velocity may exceed the sou
speed as has been observed already in the simulation@10#.
The dependence ofvc on the anharmonicity parameterb is
shown as inset in Fig. 2. In this calculation we used
following algorithm @11#: for a fixed value off ~we took f
50.5), the friction was decreased starting from the ov
damped caseh51 to the underdamped valueh51023 in
256 steps. At each step ofh decreasing we waited until th
steady state was reached and then checked if the transiti
the running state took place.

V. MULTIPLE KINKS

To study multiple kinks with the help of a variationa
approach, let us consider the double kink as a sum of
single kinks separated by a distancer,

u2~z!5uSG~z2r /2!1uSG~z1r /2!. ~18!

Substituting the ansatz~18! into the functional~11!, we ob-
tain the effective energyE(deff ,r ), which is now a function
of two parametersdeff and r. Looking for a minimum of
E(deff ,r ) over deff at r fixed, we found that for the classica
FK model a50, the functionE(r )[mindeff

E(deff ,r ) is a
monotonically decreasing function ofr, i.e., the kinks are

FIG. 2. The velocityvk of the single kink versus the force fo
b51/p, g51, andh50.05. The solid curve is for simulation re
sults, and the dashed curve, for variational approximation. Inset
critical kink velocity vc(b) at the fixed forcef 50.5.
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repelled from one another. On the other hand, for the an
monic FK model the functionE(r ) has a minimum at some
r 5r min,`, so two kinks attract one another and thus have
couple into a double kink. The ‘‘dissociation’’ energy of th
double kink is very small at subsonic velocities, but becom
high enough at supersonic velocities~see inset in Fig. 3!. The
‘‘size’’ r min of the double kink decreases withuvu increasing.
Thus, although the variational approach with the SG-ty
ansatz is too crude, it nevertheless predicts that the mult
kinks could be stable for high~supersonic! kink velocities.

As is well known, the SG kinks of the same topologic
charge always repel from one another. The same is true
static (v50) kinks of the discrete FK model, including th
anharmonic (aÞ0) model @2# ~contrary to the variationa
approximation that mistakenly predicted a weak attraction
uvu,c). Thus, there must exist a threshold kink velocityv1
such that at small velocities 0<v,v1 the steady-state solu
tion of the model corresponds to the 2p kink, while at high
velocitiesv.v1, it corresponds to the double (4p) kink ~if
v1 is lower than the kink velocity atf 51, that is true at low
enough values ofh). Indeed, the simulation results present
in Fig. 3 demonstrate that the double kink is stable within
force interval 0.5, f ,0.8 but becomes unstable at higher
well as smaller forces, while the 2p kink is stable for f
,0.5 only. Similarly, one could expect the existence of
second threshold velocityv2 such that atv.v2 the steady-
state solution will correspond to the 6p kink, etc.

VI. CONCLUSION

Thus, we have shown that supersonic kinks as well
multiple kinks do exist in the driven discrete FK model,
the interatomic interaction is anharmonic. Note that both
personic kinks and multiple kinks remain stable at nonz
system temperatures as well, at least for the time scale of
numerical simulation.

Notice also that at high forces the kink velocity is close
that of the Toda soliton@6#. Indeed, the Toda soliton is cha
acterized by the ‘‘jump’’Du52ma/b, wherem is the pa-
rameter coupled with the soliton velocityv by the relation-
ship v5c sinh(ma)/ma. In the presence of the externa
substrate potential due to boundary conditions the jumpDu

e

FIG. 3. The same as in Fig. 2 for the double kink. Inset: t
effective energyE(r ) of the double kink as function of subkink’s
separationr for fixed kink velocitiesvk50, 0.9c and 1.8c.



-

pl
he

.
up-
-
ng

PRE 62 7319SUPERSONIC AND MULTIPLE TOPOLOGICAL . . .
must be equal to 2pp for the p kink; thus we obtainma
5pbp, or 2m5pb. In particular, for the anharmonicity pa
rameter b51/p used in the simulation, we havev/c
5(sinhp)/p'1.18 for the 2p kink andv/c'1.81 for the 4p
kink, correspondingly. Thus, the supersonic and multi
kinks may be treated as Toda solitons ‘‘disturbed’’ by t
external periodic potential.
d

e
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