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Driven kink in the Frenkel-Kontorova model
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The dynamics of dc driven chain of harmonically interacting atoms in the external sinusoidal pgtestial
Frenkel-Kontorova modgls studied. It is shown that in the underdamped case the motion of the topological
soliton (kink) becomes unstable at a high velocity due to excitation of the localized intrinsic kink (tiuale
discrete shape mode, or discrete breatiethe kink tail. When the amplitude of the breather’s oscillation
becomes large enough, it decays into a kink-antikink pair. The subsequent collision of newly created kink and
antikink leads to a sharp transition to the running state, where all atoms of the chain slide over the external
potential almost freely.

PACS numbgs): 45.05+x, 82.20.Mj, 63.20.Ry, 05.66-k

I. INTRODUCTION the sharp transition to the running state has a solely dynami-
Driven dynamics of a system of interacting atoms is ancal origin. _ _ _
interesting physical problem as well as it has important ap- Indeed, the system of interacting atoms subjected to the

and on crystal surfaces. One of important applications o nd the mass or charge transport in the system is carried out

driven dynamics has recently emerged in tribology Studiesfytopological defects, the local compression or expansion of

. . : : he system(e.g., sed9]). These defects are known as kinks
wh_ere a thin at_om|c layer is confined between two substrateﬁ] the 1D FK model, and as domain walls or dislocations in
which move with respect to one anoth@.g., sed1] and

! X ? 2D or 3D systems. However, these topological excitations
references thereinLarge-scale molecular dynamics simula- usually cannot propagate with velocities higher than the

tion showed that this system exhibits a stick-slip motion on ggynd speed. Thus, if one applies an external driving to ac-
an atomic scale, which is explained by a shéfifst-orde)  celerate the kink to a high enough velocity, its motion may
transition of atoms in the confined layer from a “locked” pecome unstable and could result in a sharp transition to the
state to the “running” state when the force applied to therunning state. This scenario was observed in the simulation
upper substratéor its velocity increases over some thresh- [6]. The goal of the present work is to study this phenom-
old value. In the running state the atoms in the layer slideenon in detail and to clarify the mechanism of instability of
over the substrates almost freely, so the effective frictionafast topological excitations.
force is small. If then the applied force decreases, the back We consider the classical FK model with harmonic inter-
transition to the locked state takes place at a smaller force, saction and sinusoidal substrate potential at zero temperature.
the system exhibits hysteresis. Compared with the classical FK mod@.g., seg9]), the
Such a behavior was observed in almost all systems studlew issues of the model under consideration are the follow-
ied: in three dimensional3D) systems with realistic inter- ing: we applied a dc forceto all atoms, and we assume also
atomic interaction[1,2], in the isotropic two dimensional the external viscous damping with a coefficient so the
(2D) system[3,4], in the anisotropic 2D systeif5], in the ~ Motion equation Is
one dimensionallD) system with anharmoni@xponential
interaction[6], and in the classical Frenkel-KontoroWaK)
model [7,8], where the interatomic interaction is harmonic wherex, is the coordinate ofth atom andg is the elastic
and the external potential is taken to be sinusoidal. Moreeonstant of harmonic interaction between nearest-neighbor
over, the hysteresis persists at nonzero temperaflres]. atoms. Throughout the paper we use the dimensionless sys-
A possible explanation of the hysteretic behavior may beem of units, where the atomic massnis=1, the period of
done analogously to first-order phase transitions in thermothe external potential is= 27, and its amplitude is=2. In
dynamics: when the velocity of upper substrate increases, ththese units, a characteristic frequency of atomic vibration at
temperature of confined layer may increase as well, so it hathe minimum of external potential isy=1, a characteristic
to melt finally, and this results in decreasing friction. How- time scale isry= 2, and the maximum value of the external
ever, it is hard to expect that the first-order phase transitionlc force, when the minima of sinusoidal substrate potential
exists in 1D systems, especially with repulsive interactiongisappear and topological excitations cannot exist anymore,
as was observed if6]. Therefore, it was proposd®] that is f=1. We use periodic boundary conditions with the num-
ber of atomaN=Ng+1, whereNg is the number of wells of
the periodic potential, so we have one kif@xcessive atoin
*Electronic address: obraun@iop.kiev.ua inserted into the commensurate structure.

Xi+ X —O[ X1+ X _1— 2% ]+sinx,—f=0, (1)
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The FK model as well as its generalizations were studieanodes for the driven kink as well. The shape modes are
in a number of paperée.g., sed9] and references thergin  spatially localized objects with frequencies outside the pho-
Without the external periodic potential the only excitationsnon spectrum and, therefore, they correspond to long-living
of the model are acoustic phonons with the spectrunexcitations of the system. This defines the importance of
wpn(K) =ck, wherec=2m/g is the sound velocity. How- shape modes in system dynamics: for example, they may
ever, with the presence of the external potential the spectruiemporarily store energy at kinks’ collisions. The shape

becomes optical mode can be treated as a discrete breather captured by the
kink as was described {12]. The essential difference of the
wgh( k)= wﬁm+ 2g(1—cos 27k), (2) captured discrete breather from the free one is that due to the

kink, the captured breather is a linearly stable excitation,
where w?, =(1—1f?)¥2 and the wave vectck must belong while the free discrete breather needs a nonzero threshold
to the first Brillouen zonelk|<1/2, so the phonon frequen- energy to be excited.
cies lie within the interval wmn=<wp(K)<wma, where The paperis organized as follows. In Sec. Il we study the
Wi o= 02+ 4g. Besides, the FK model is nonlinear and driven model in the continuum I|m|t approximation. Then in
admits two more kinds of excitations, the topological excita-Sec. lll we present the simulation results for the discrete
tions called kinks and antikink&hey describe a local com- chain. Finally, Sec. IV concludes the paper.
pression or extension of the chain respectiyeiynd also the
dynamical nonlinear excitations called discrete breathers Il. CONTINUUM LIMIT APPROXIMATION
(e.g., sed9]). The kinks are responsible for the dc mobility
in the FK chain. In the continuum limit approximation,
which can be used at large values of the elastic consgant,
>1, the motion equatiofil) reduces to the well-known sine- ) ) .
Gordon(SG) equegtion, and the kinks move freely along the — (2m)?U"(x,1), so that the motion equatiofl) reduces to
system. In the discrete system the kink motion is not free, théhe form
kink must overcome some potential barriers known as the
Peierls-NabarrdPN) barriers, so the kink starts to move only
if the dc force exceeds some threshold vaigg. Besides, at
least in the anticontinuum limiti.e., wheng<1) the FK
model supports the existence of localized nonlinear excit
tions, the so-called discrete breathé¥Bs), which do not
carry mass along the chain, but at a high amplitude of their
vibration they may decay into a kink-antikink pair. These

newly created kinks and antikinks then move independentlyrhe kink (excessive atoinsolution of Eq.(4) has the form
and thus increase the system mobility. As will be shown in

For a large value of the elastic constagi; 1, we can use
the continuum limit approximationy,(t) =2l +u(t), |
—x=2al, u(t)—u(xt),  ug(t)Fu-g(t) —2u(t)

u(x,t)+ gu(x,t) —d2u”(x,t) +sinu(x,t)— =0, (3)
whered=21/g is the width of the static kinkin our system
of unitsd=c). For the case of =0 and »=0, Eq.(3) re-

3uces to the SG equation,

u(x,t)—d?u”(x,t)+sinu(x,t)=0. (4)

the present paper, namely the excitation of a discrete breather u(x,t)=4tan texg — (x—uvt)/dy(v)]. (5)
at the tail of moving kink is responsible for the instability of
fast kink. The SG kink, Eq(5) can move with any velocitjv|<c and

One more issue of the FK model is the existence of lineais characterized by the widtth(v) =d(1—v?/c?)¥? and the
excitations of the kink itself, the so-called shafieterna)  effective massn(v) = (4/md)(1—v?/c?) 2
kink modes. Namely, if one looks for a solution of the mo-  Considering the kink of Eq(3) as a stable quasiparticle
tion equation in the formx(t)=x{""W+ y;(t) and then lin- and assuming that its parameters at nonZeand 7 are the
earizes the resulting equation fgr, it may have localized same as those of the SG kink, the steady-state kink velocity
solutions that describe small-amplitude oscillations of thecan be found approximately from the equatiom
kink shape. In the exactly integrable SG equation the only=f/7m,(v) that leads to the dependence
mode of this type is the zero-frequency Goldstone mode,

which describes the translational invariance of the SG equa- (SG) 7 f
tion. In the discrete FK model, such a mode also always v (f)=c (Wf)2+(4n)g- (6)

exists, but now it has a nonzero frequen®pn<w®min,

which corresponds to the kink’s oscillation in the minimum the gependence, E¢6), is shown in Fig. 1 by the dotted
of the PN potential. However, when the model deviates froms;rye.

the exactly integrable one, so that the kink shape deviates A general solution of Eq(3) can be found numerically
from the SG form, there may appear additional shape modegy|y. | ooking for a steady-state solution in the forrx, t)

either the low-frequency shape modes below the phonon u(x—ot), we obtain for the functiomu(z) the ordinary
spectrum, or/and the high-frequency modes above the phgjifferential equation

non spectrum of the discrete chain. Namely, the additional

shape modes may appear due to deviation of the substrate (c2=v?)up(z)+ puug(z) —sinu(z) + f=0. 7
potential from the sinusoidal forrte.g., sed9,10] and ref-

erences therejndue to anharmonicity of the interatomic in- Introducing the new variableg=u,(z) and w(&)=u.(2),

teraction[11], and even solely due to discreteness effectq. (7) reduces to the first-order differential equation
[10]. Because the dc driving fordealso leads to a change of

the kink's shape, one may expect an appearance of shape (C—v2)W' (E)W(&)+ puw(&)—siné+f=0. (8
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FIG. 1. The kink velocity, (normalized on the sound speef
as a function of the driving forceéfor g=1, »=0.1, andN=128. FIG. 2. Kink shape in the continuum limit approximation for
The dashed curve corresponds to the SG dependencég)Eand  7=0.1 and different values of the external forde: 0.1 (the dot—
the dotted curve, to the kink velocity in the continuum limit ap- dashed curve f =0.6 (the dashed curyef =0.9 (the dotted curvg
proximation. andf=0.99(the solid curvg Inset: the separatrix of E¢8) for the
same model parameters.

The kink solution corresponds to the boundary conditions .
U(— %) = U+ 27, Up(+%)=us, uli(iw) =0, or Ill. DISCRETE CHAIN: SIMULATION RESULTS

A. Automodel solution

W(Us+27) =w(us) =0, ©) To find the dependence (f) for the discrete FK chain,

we started from thd=0 equilibrium state and slowly in-
creased the force by small stepf=10 2 with the rate
103, After every step of changing the force, we looked for
a steady-state solution of the motion equatidn by the
following method. First, we made the second-order Runge—
W' (Ug+27) = (— v +D)/2(c2—v?), Kutta (RKN) iterations for a timet’=2N T(f) with the time
stepAt=T(f)/M, whereN is the number of atomén the
simulation we used=128,256...,2048),M is an integer
(we checked the results favi=64, 128, 512, 1024, and
8192, andT is a parameter. At the beginning, i.e., at low

whereD =[(7v)2+4(c?—v2) V1 f2]¥2 Thus, we have to forces~f<fPN when the kink does not move, we used the
look for a separatrix solution of Eq8), which satisfies the VvalueT=10. We considered the kink as pinned if the veloc-
boundary condition§9) and(10), that is possible for a given ity of the cen'ger of mass of the system averaged over the time
value of the parametar=uv, only. The dependence,(f) t' (v =(Zu)(t")), was lower than 10%c. When the kink
obtained in this way fory=0.1 andg=1 (for other values of starts to move, i.e., d&=fpy, first we used the estimation of

g one can rescale by introducing the dimensionless coordife delay timeT=27/(v,) for the value ofT. Then we
natex=x/+/g) is shown in Fig. 1 by the dashed curve. One started to varyT and to test the value

can see that it practically coincides with the SG dependence,
Eq. (6). Finally, the kink shape can then be restored from the
functionw(¢) by the integration

where u;=sin !f. Close to the boundary point§,= us
+2m or &=u; one can use the expansiow(¢)
~W' (&) (&—&p). Substituting this expansion into E),
we obtain

(10

W' (ug)=(—7v—D)/2(c’~v?),

AU(T)= 2| {[u 1 (t+ T —2m—uy(1)]?

u(2) . - ) 12
2= f dew(¢). (11 s+ D -3 ] (12

ustm

The shape of the separatrix for different values of the exterl0oking for a minimum of the functiod U(T) for a givent.

nal forcef is presented as an inset in Fig. 2, and the correin more detail, we made iteration with, . ;=(1+¢€)T, de-
sponding shape of the kink, in Fig. 2. One can see that thereasinge by two times at each step starting frans 0.1 and
shape of the driven kink is asymmetric &0, the kink  changing its sign if necessary in order to decrease the value
“head” is sharper, while its “tail” is more extended than AU at every stepn. The iterations continued untik
those of the SG kink, as it directly follows from EL0). It ~ ~10 5. In this way we found the steady-state solution for
is indicated, however, that in the continuum limit approxi- every value of, which corresponds to a zero of the function,
mation the kink shape is monotonic for all values of theEq. (12), with an accuracyAU<10 3 i.e., it satisfies the
driving force. automodel condition
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0 20 40 60 80 100 120
z=1-t/T 1. At larger forcesf>f;, the sharp transition to the run-

_ _ _ _ _ ning state takes place. The conditityy<1 is satisfied and,
FIG. 3. Kink shape in the discrete chain as a functiorzefl  therefore, the sharp transition to the running state exists only
—t/T(f) for: (@) a small forcef=0.025 and(b) the critical force in the underdamped systemy< 7., When the kink can
f=0.650191.g=1, »=0.1, N=128, andM=64. Black circles  o5ch the critical velocity before the minima of the external

o . . ef)otential disappear. For example, fg.=1 we found that
sponds to the “automodel” curve. Inset: the corresponding separa-
Nmax— 0.385 7225,

trices. The shape of running kink at different force values is

shown in Fig. 3. These dependences can be presented as
U (D) =u(t—T)+2m, (13 functions of one independent variablgf)=1—1t/T(f),

wherel is the atomic index. Due to the automodel condition
where T=T.. is the delay time. The kink velocity is then (13), the dependence(t) calculated for a time interval O
determined as,=27/T. The described algorithm allows us <t<NT for a given atom only, allows us to restore the
to calculate the dependencg(f) with any desired accuracy €volution of all atoms in the chain, because each next atom
(limited by accuracy of the RK method only, which is ap- repeats the trajectory of the previous atom in the chain with
proximately the same for all values of the force due to thethe delay timeT. Note that in agreement with the continuum
appropriate choice OAt) and at the same time to test the limit approximation, the discrete kink also has a sharp head
automodel condition, Eq(13), checking out whether the and an extended tail, although the tail of the discrete moving
steady state is reached. Besides, this technique is faster thkifik has a complicated structure.
that used if5,6], where the mean system velocity was cal- Comparing Figs. 2 and 3 one can see that, contrary to the
culated by averaging over long times. The algorithm with the

fast Fourier transforril3] often used for such types of prob- LOFT R R
lems, also gives too slow convergence for the single kink /;2
problem. : oo
To find the critical forcef.;; when the moving kink be- o—o0—o0—0""° . L
comes unstable, we also controlled the valyg, at every o 08F V. i /x/x A
RK step. When this value exceedswe returned back to the =~ NERVEIIEVESS s s X
previously saved step of changirigdecreased\f by ten >'5 Pt
times, and repeated the simulation. The procedure was con- . o o=l o//
tinued untill the accuracAf~10 ® was reached. 5 06 &= o 7
The results of simulation fog=1 and »=0.1 are pre- * X e=lis ,,o’,/)‘ crit
sented in Figs. 1, 3 and 4. First, the steady-state solution is I _/,o:ix’(
automodel forany external forcef p<f<f.;. Second, the punrs o
kink velocity in the discrete case is lower than that in the 04, i M
continuum limit approximation because of additiofiatrin- 0.01 .. 0.1
friction

sic) damping of kink motion due to discreteness effects.
Third, while in t_he continuum I_|m|t approximation the FIG. 5. The critical velocity . /c (solid curve$ and the critical
steady-state solution of moving kink exists for any foffce force f; (dashed curvess functions of the damping coefficient
<1; in the discrete chain such a solution exists only ffor for two values of the elastic constarg=1 (diamond$ and g
<feit, Wheref ;;=0.650 19 for the parameters used in Fig. =1/3 (crosses N=256.
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FIG. 6. The critical values .;; and 7., vs the elastic constagt
for a fixed value of the external forde=0.7. N=256.

shape of a moving kink in the continuum limit approxima-

tion, the discrete kink has its own intrinsic structure. For

example, the kink tail in Fig. ®) exhibits a spacial period-
icity with a wave vectok~1/3. The periodicity of the kink’s

tail is seen more clearly in Fig. 4, where we plot the veloci-

ties u(t)c —u’(z) versus the relative displacemenisi(z)
=u(z+1)—u(z) for all atoms for the interval &t<T. For
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B. Instability of fast kink

To understand a mechanism of instability of fast kinks,
first we studied the dependence of critical values on system
parameters. Figure 5 demostrates the critical kink velocity
Uit @S a function of the external dampimgfor a fixed value
of the elastic constarg. The instability exists only for the
underdamped case;< 7,ax, When the kink can reach the
critical velocity, which is close to the sound spex@t some
force f;<<1. At large frictions the maximum kink velocity
is lower thanc even in thef — 1 limit, and the transition to
the running state takes place fat 1 only, simply because
the minima of the external potential disappear and all atoms
go to the running state simultaneously.

In Fig. 6 we present the dependencew gf and 7 on
the discreteness parametgfor a fixed value of the external
force f=0.7. In this simulation we used the following algo-
rithm [14]. First, we prepared the initial configuration by
relaxing the equidistant configuration &0 for a given
value ofg. Then we applied the dc forde=0.7 and allowed
the system to reach a steady state, waiting a transient time
ty=327y. At the beginning, the external damping was taken
to be large,n=1 (recall that the characteristic frequency of
atomic vibration iswy=1). After that we decreased the
damping coefficient; with small stepgeach new value of
was obtained from the previous one by dividing over
1.027 46, so we made 256 steps for changjrfigom »=1 to

a given timet, such a picture corresponds to the stroboscopic,=10-3), and at each step we first waited for a timerg®
map of the system. Recall that in the continuum limit ap-jlow the system to reach a new steady state, and then for the
proximation this dependence should be linear, becausgext time period .= 32r, we measured the average system

u(x,t)=—v,u’(xt) in this case.

n=0.0368 g=1/3

n=0.13572 g=1/3

velocity. From these simulations one can see that the transi-

2 T ] 2 T i ]
L . ; 1E , 3
S 0f ’ ; ¥ 0F o 3
_1 - : 3 _1 - 3
FIG. 7. Instantaneous system
—2h L . L o —Rh . : ' O configuration (stroboscopic map
-2 -1 0 1 2 -2 -1 0 1 2 just before the kink destroying
U~ W~y (vi=v i) for two different values
7=0.0368 g=1 7n=0.13572 g=1 of the damping coefficient
2F T 7 T = oF T T T 7 =0.036840 and »=0.135721)
and two values of the elastic con-
. stant @=1/3 andg=1).
1 . 7 1t . ]
s of ; s Of .. :
—-1F . 3 —-1F 3
—2 CL 1 1 1 L1 I —2 CL 1 1 1 ]
-2 -1 0 1 2 -2 -1 0 1 2
U, — U~
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FIG. 8. Graphical solution of Eq14) in the extended Brillouin
zone scheme forta) f=0.025,(b) f=0.1, and(c) f=0.5. s of (1]3
tion to the running state takes place when, due to the relativ- 5| 2L
istic narrowing, the kink widttd,=d(1—v?/c?)¥? becomes P
small,dk_<a, so that the discreteness effectscillation of 04 02 00 02 03 04 02 00 02 04
the moving kink in the PN potentinhave to become too
large. k k

In Fig. 7 we plot the stroboscopic map of the running kink
for different values of the parametegsnd » for the external
force just before the kink is destroyed, when,
—vgit(d,7). One can see that the kink tail & f.;; always

demonstrates a periodic structure with relatively simple ra- 14 g0,y that the described resonances are responsible for
tional wave vectors liké&=1/2, k=1/3, etc. the tail's oscillation, we calculated the spacial Fourier trans-
form of the kink shape

FIG. 9. Graphical solution of Eq14) in the restricted Brillouin
zone scheme forta) f=0.025,v,=1.096;(b) f=0.1, v,=3.133;
(c) f=0.5, v,=5.204; andd) f=0.6502,v,=5.648.

C. Kink’s tail
N

E ul(t)eiZﬂ'lk

=1

The periodicity of the kink’s tail may be explained simi- T
larly to the work of Peyrard and Kruskgl5]. In the frame G(k)ZTflf dt
comoving with the kink, the phonon spectrum is modified 0
due to Doppler's effect{) (k) = w,n(k) —kv. The kink
may be followed by a standing wavéhe wave comoving
with the kink with the same phase velogiti

. (15

The functionG(k) is shown in Fig. 12. Then we found the
maxima of G(k) for different kink velocities and plotted
their positions in Fig. 10. One can see that the short-wave
Qpr(k)=0. (14) component of kink tail oscillation is characterized by the
wave vector which coincides with that obtained from the
This equation always has one or more solutions as shown igolution of Eq.(14) (see triangles in Fig. 30In particular,
Fig. 8 in the extended Brillouin zone schem&|<x~. At  for the forcef=0.65, which is close to the critical force, we
large kink velocities) > 2wmax, this solution corresponds to
the wave vector within the first Brillouin zorisee curvec) osFT T T T T T & !
in Fig. 8]. At lower kink velocities the solution belongs to
the second Brillouin zongcurve (b) in Fig. 8], then to the
third Brillouin zone, etc. In the restricted Brillouin zone
scheme, whergk| <0.5, we have to look for solutions of the
equationQ (k) =nvy, wheren=0,+1, ... is aninteger. -
The graphical solution in this scheme is shown in Fig. 9. The
solution withn=0 corresponds to the resonance of the wash- 02
board frequencyw,,s=v With phonons, so the solutions
with n#1 may be called “super-resonance§?]. The de- o1k
pendencé,{v ) obtained by numerical solution of E(L4)
is shown in Fig. 10. Note that at small kink velocities Eq. 0.0 bs
(14) has more than one solution. For example, for the case B T
shown by curvea) in Fig. 8, the lowest root corresponds to 1 2 3 4 5
the oscillation behind the kinkthe group velocity of v
phononsv ¢ =dw,(k)/dk is negativg, and the second one
to the oscillation ahead of the kink ¢>0). Indeed, from FIG. 10. The dependendg.{v,), Wherek, is the solution of
Fig. 11 one can see that while at large velocity the kinkgq.(14). Triangles and circles show the positions of maxima of the
shows oscillations in its tail only, at low velocities there are Fourier transfornG (k) of the kink’s shape. The parameters are the
also oscillations ahead of the moving kink. same as in Fig. 1.

04}

03

Ik
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obtained from Eq(14) thatk~1/3 in agreement with peri-
odicity of the kink’s tail in Figs. 8) and 4. FIG. 13. The response functidi(k,w) as a gray scale map.

To study the resonances in more details, we also calcu=1, 7=0.1, N=128, andM =64, the force values ia)—(d) are
lated the response functidi(k, ») in the following way. We  the same as in Fig. 9.
solved simultaneously the unperturbed motion equation ] o .
and the disturbed equation, where a small no&fg(t)  Stricted Brillouin zone(l_:|g. 9 we conclude that namely the
= er((t), wheree=10"% andr (t) is a random number uni- €Xcitation of phonons is responsible for the oscillating kink
formly distributed within the interval—1<r,(t)<1 was tail. However, Fig. 13 shows one more very important result:
added to the external forde Then we made the spatial— Cl0Se to the critical velocity one can see from Fig(dand
temporal Fourier transform of the difference of the disturbeceSPecially Fig. 1@l) that the resonance is spread. This indi-
and undisturbed solution&(k,w). [In fact, we simulta- Cates that just before the instability, the excitation becomes

neously used six disturbed equations with different initializa-SPatially localized. _ _
tions of the random number generator and then averaged Anothe.r indication that th(_a.klnk shape has a complicated
the calculatedF(k,») values. Besides, to minimize a structure just close to the critical velocity, follows from the
drift of the kink velocity due to noise, we orthogonalized the Fourier transform, Eq(15), of u|(t). As can be seen from
noise to the velocity vector {u/(t)}, r,(t)—r(t) Fig. 12, close tw;; the functionG(k) shows an additional

—U|(t)2|[i1,(t)n(t)]/E,Uf(t)]. In Fig. 13 we plot IfF (k)| peak corresponding to spatial oscillation of the tail with a

as a gray scale map. Comparing these pictures with the rs_mall wave vectok=0.1 and frequency < min. This new
gray b- panng P %ranch is also shown in Fig. 10 by circles. We interpret these

effects as an indication of the appearance of a shape mode
(discrete breathgnf the moving discrete kink just before it

is destroyed. The same conclusion follows also from the Flo-
quet analysis described in the next Sec. Il D.

9 T T T T T T

D. Floquet analysis

The motion equationgl) can be rewritten in a matrix
form for the 2N vectorX={x,,x;} as

10°G(k)

X=G(X). (16)

Let X,ink(t) be the steady stat@utomodel solution of Eq.
(16), and let us look for a general solution in the form
X(t) = Xyink(t) + Y (1), assumingy(t) to be small. Thery (t)
has to satisfy the linearized equation

k=w/v, .
Y (1) =B[Xunk(t) ] Y(1), 17
FIG. 12. Fourier transfornt (k) of the kink shape fog=1,
7=0.1, and different forces(a) f=0.3 (v,=4.543), the dotted whereB(t)=6G/56X. A formal solution of this equation is
curve; (b) f=0.5 (,=5.204), the dashed curve; an@) f
=0.650191 ¢, =5.648), the solid curve. Y(t)=C(t,0) Y(0), (18
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where the matrix

C(t,O)zexpftdt B(t) (19
0

corresponds to théime-orderedmatrix exponent which is
defined as the limit of product

exp(At By )exp(AtBy 1) ... exgAtBy), (20
whereB,=B(k At), At=T/M, and the limitM —« is as-
sumed.

Calculation of the expressiof20) is connected with a
large number of matrix multiplications. Instead, from Eq.
(19) one can derive the differential equation for the matrix
C(t,0)

C(t,0)=B(t) C(t,0),

C(0,0=J, (21

wherelJ is the 2N X 2N identity matrix, and then to solve Eq.
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The timeNT in Eq. (26) can be reduced t® with the help of

the automodel conditiori13) of the steady-state solution.
Indeed, taking into account the automodel condition, one can
write

A(t+T)=pAt)p~*, (27)

wherep is the cyclic shift matrix

0
1

0
0
1

o
o O O
o O B

(28)

0 0 1 0

The matrixC is transformed correspondingly as
C(t+T,0=PC(t,0 P4, (29)

whereP is the block matrix

(21) with the RK method. This procedure is about ten times

faster than that with the exponents’ multiplication. To sim-
plify the calculation, we also used the substitution

Y(t)=Y(t)exp — 7t/2), (22)
so that Eq.(21) takes the form
d. . ~
&C(t,O)z B(t) C(t,0, C(0,0=J, (23

whereC(t,0)=C(t,0)expt/2), and the matrixB(t) has the
form

wherel is the N X N identity matrix, and the matriA(t) is
defined by

. 24

E“”:<A<t>

a;(t) 1 0 0

1 ayt) 1 0

At)=| O 1 agt) 0
1 0 0 1 ay(t)

(29)

with a,(t) = — 22— cosx™(t) + (7/2)>.

The Floquet technique deals with the stability of time pe-
riodic solutions. In the model with periodic boundary condi-
tions we have to choose the tinlNeT as the period of kink
motion along the whole system. Integration of E2P3) over

the period\ T determines the Floquet mat®&(NT,0) which

linearly relatesY(NT) to its initial valueY(0). Then, we
have to solve the corresponding eigenproblem,

C(NT,0Y=XY. (26)

p O
0 p

P (30)

|

C(NT,00=C[NT,(N-1)T]

|

So, we have

XC[(N=1)T,(N=2)T]...C(T,0), (31

or by usingPN=1, owing to periodic boundary conditions,
we finally obtain

C(NT,0)=[P~1C(T,0)]". (32)

Thus, we can use the mat§(T) =P 1C(T,0) and look for

a solution to the eigenvalue proble8{T)Y= Y. Thenx
=uN, and finally the eigenvalues of the primary matrix

C(NT,0) are \=Aexp(—7t/2). Note that the substitution,
Eqg. (22), does not affect the eigenvectors of the problem.
The procedure described above was performed for differ-
ent time steps of the RK methodt=T/M with M
=64,128...,8192 for the chain oN=128 atoms. We de-
termined the dependence of the accuracy of the solution of
the eigenvalue problem on the accuracy of calculation of the
steady-state kink shape using, as the test condition, the fact
that for the exact solution one of the eigenvalues must be
equal toh;=1, and the corresponding eigenvector must be

proportional toinnk(t). We found that decreasing the time
step At leads to some improvement of the resulfisr ex-
ample,|\;—1|~10"% for M=64 and|x,—1|~10 1 for
M=8192, corresponding)y but the qualitative picture re-
mains unchanged, so in order to reduce the computational
time we performed most of calculations wilhh=64.

The results of the calculation are the followitgpe Figs.
14-18:

(1) All eigenvalues\ lie symmetrically with respect to the
circle of radiusR= exp(— 7T1/2) (recall thatT depends on the
force f) and have properties similar to those for the Hamil-
tonian problem, where the corresponding Floguet matrix is
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ool
0.98 | 1 -
096 _Feeer

004 o

092 | A, T
0.90 | Ny

0.647 0.648 0.649 0.650
0.08

0.06 |-

0.04

Re(’b) 0.02.-

FIG. 14. Floquet eigenvalues fg=1, »=0.1, f=0.65, N 0.00
=128, andM =64. The circle corresponds ®=exp(— 7T/2).

AN

0.647 0648  0.649  0.650
force

symplectic. *Nam;aly, we diteim'”ed tha”?f IS an elgen- FIG. 16. Dependence of eigenvalues and eigenvectors on the
value, them\*, R?/\, andR?/\* are also eigenvalues with ¢, .. (a) the eigenvalues;, \} , \,, and\}, and(b) the distance

the same numerical accuracy. between the corresponding eigenvectora\=||Y;—Y,||
(2) The two eigenvalues are always rea,=1 [this C1eoN 1/ < \ 121102 e o P
trivial solution corresponds to the translational, or phase_{(ZN) ZiSal (Y= (Vo) and AT =[]Y1 =Yy
mode with the eigenvectory(t) o Xk(t)] and, symmetri- (3) At small forces,f<f,, all other eigenvalues lie on
cally to it, A ; =exp(— #T). Note that for time-reversiblee.g.,  the circleR. With the increase of some of eigenvalues may
Hamiltonian systems these eigenmodes are twice degenercollide” and go out of the circle, probably due to paramet-
ated and both correspond to the=1 eigenvaluge.g., see ric resonances, but then they come back to the circle. Be-
[16]). cause the eigenvalues do not go outside ofRkel circle,
this effect does not lead to an instability as it does in Hamil-

() b tonian systems.
o015l 015 T 0.15 (4) At high forces close tof.; (namely, for f
AV ol : >0.646676 04 for the chosen set of parameteamother
I fres 01\ | : pair of eigenvalues., and\}, become real and leave tie
L 005F 005 g 005 =exp(—xT/2) circle as is demonstrated in Fig. 15. At
< ol 4 S o T < ok H — f it this second pair approaches the first aag,»\; and
E | E N E | N5—\; (see Fig. 18 The corresponding eigenvectors also
005 005 e —0.05p 11 tend to one another. A general Floquet theory states that
I VAR —01f T 0.1} when two eigenmodes coincide having the 1 eigenvalue,
—0.15F 4l ~0.15 : 015 j” the corresponding steady state of the system becomes un-
087 1 0.88 1 0.89 1 stable(e.g., sed17], Chap. I, theorem 3)2
Re(A) Re(A) Re()\) Evolution of the eigenvalues, and A, and the corre-
(d) (e) ) sponding eigenvectobé, and Y} with changing dc forcé is
‘ ‘ ; presented in Figs. 16 and 17. One can see that at the begin-
Ok b O1b At O] T S ning, when thex, mode just emergelfig. 17a)], it corre-
‘ ' sponds to an almost pure phonofmonlocalized mode, but
= 0.05p 3k = 0.05; ++7 ' = 0.051 : with increasingf the degree of its localization increases.
T o T T O ool Thus, the\;, mode can be considered as the discrete breather
= oosl T j = 05‘ b T oosh ‘ solution excited by the moving kink. From the inset in Fig. 1
) ) ) : one can see also that just befdgg, the kink velocity sharply
-0.1} I, ] S A -0.1 increasesd?v, /df2 changes its sign, andv,/df tends to
‘ ‘ Q infinity at f—f; (dv,/df~10.5 atf=0.65 anddv,/df
0.89 1 0.89 1 0.89 1 ~2.89x 10° at f=0.650 19).
Re(A) Re(A) Re())

FIG. 15. Evolution of the Floquet eigenvalues witbhanging: E. Kinetics after kink destroying

(a) f=0.4,(b) f=0.5,(c) f=0.6,(d) f=0.645,(e) f=0.65, and(f) To study the scenario of kink destroying in details, we
f=0.650 191. started from the steady state corresponding to the kink mo-
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v o L
0 40 60 80 100 120
z=1-t/T

0 2

FIG. 17. The eigenvectoy, for different force values(a) f
=0.64667604, (b) f=0.6468, (c) f=0.648, and (d) f
=0.6501919086. () shows the eigenvectorY, for f
=0.6501919086; note that it looks practically the same for all

forces used in the present figure. The curves were obtained as ﬂb

solutions of linearized motion equation with initial condition corre-
sponding to the eigenvectof, so they may be treated as atomic
trajectories corresponding to the eigenmode. Th&, curves are
artificially shifted upstairs to be shown all in one figure.

tion with v, ~v ;i (f=0.65 for the parameterg=1 and »
=0.1) and then slightly increased the fore the valuef
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tot

107y

time

FIG. 19. The dependenagy(t) for the system evolution &t
=0.651. The solid line describes the #if,(t)=2c(t—ty). Inset:
the same in the logarithmic scale. Parameters are as in Fig. 18.

triple” kink. Then, the first antikink creates behind itself
She more kink—antikink pair. The kink from this last created
pair moves to the right and finally meets with the second
antikink. After their collision an avalanche starts to grow.
Figure 19 shows the evolution of the total system velocity
viol(t)=2,u,(t) during this process. When the first kink—
antikink pair is createdy,, increases two timegsee details
in inset of Fig. 19, then it again increases at the next cre-
ation events, and finally, when the avalanche starts to grow,

=0.651). The results of simulation are presented in Fig. 180tot begins to increase linearly with time with the velocity

where we plotu;(t) versus the index for different time
moments, each next curve being slightly shifted upstairs an

2c, so that both fronts of the running domain move with the
dound speed.

to the right. One can see that the scenario is the following. Figure 20 demonstrates the shape of the growing domain

The first event is the creation of a new kink-antikink pair in
the tail of the primary kink. The newly created antikink
moves to the left, while the primary kink and the newly
created kink produce the “double” kink which moves as a
whole. Then one more kink-antikink pair is created in the tail

of the double kink; again the second antikink moves to the

left, while the new kink plus the double kink produce the
1.0
0.8

0.6

=
o
S 044

1 (atomic number)

FIG. 18. Evolution of the system &t=0.651 starting from the
initial state corresponding to the steady stateffer0.65, whernv
~vgit- The system parameters gge-1, »=0.1, andN=1500.

of running atoms. In this figure we plot the functigm(t)

0.3F
0.2 (a)
0.1F
0.0F
—-0.1¢
-0.2¢
-0.3

Q.

i)

500 1000 1500

atomic number

1500

500 1000
atomic number

FIG. 20. Structure of the running domain at a fixed time mo-
ment: (a) the density of excessive atomg(t)=—[u;, (1)

—u,(t)]/(27)? and (b) the atomic velocitie(t). Parameters are
as in Fig. 18.
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=—[u,1(0—u(t)]/(2m)? which describes the density of ex- breather emerges in the kink tail. With increasing kink ve-
cessive atoms in comparison with the commensurate strudecity, the amplitude of this excitation increases too, and at

ture, and the atomic velocities(t) for a fixed time moment. Some critical velocity the DB decays into the kink—antikink
One can see that in the running domain the atomic velocitieBair. This instability exists only in the underdamped system,
are almost constant and are approximately equal to the maxi#< 7max<0-5, when the kink can reach the critical velocity
mum atomic velocityf/ =6.5, and that ahead of the fronts at a force lower tharf=1. In the overdamped system the
of the running domain, one can see the running triple kinkkink velocity remains lower than the critical one even in the

and the double antikink. f—1 limit, so the sharp transition cannot emerge.

The shape of the functiop(x,t) in the running domain The emission of kink-antikink pairs in the tail of the fast
may be expiained in the fo”owing way. Differentiating Eq kink leads to the Sharp transition to the running State jUSt
(3) over x, we obtain for the function p(x,t)= after the first collision of the secondary kink and antikink. At
—u’(x,t)/27 the following equation: the collision, the atoms in the collision region go to the run-

ning state, and this running domain then grows with the
p+np—p"+[cosu(x,t)] p=0. (33 sound speed. Atoms in the running domain have velocities

close to the maximal value, while the atomic density has a
Averaging this equation over time for a periddwe obtain  cosine profile. Besides, we observed that the double and
for a slowly varying component of the density the following triple fast kinks in the front of the running domain remain
equation: stable, at least on the time scale of our simulation.
_ . Although most of the simulation presented in the paper
p"(X)+kFp(x)=0, (34  was performed for given parameters of the systgm { and
) ) _ ) 7n=0.1), we determined that the described scenario remains
wherekp = — (cosu(xt)) and O<k;<1. Thus, in the running  the same for other parameters as well. Thus, we conclude
domainp(x)«sink;(x—x.), wherex, is the center of the run- that the scenario described in the present wWakk, the ex-
ning domain. citation of the discrete breather in the tail of the fast moving
topological excitation, the decay of this DB into a pair of
IV. CONCLUSION new topological excitations, then their collision with the sub-

, ) _sequent growing of the running domaishould be generic
Thus, we have studied the underdamped driven dynamicgyr 5 wide class of nonlinear systems.

of topological excitationgkinks) in the discrete SG chain
and showed that the steady-state kink motion is always au-
tomodel, each atom repeats the trajectory of the previous
atom with the time delayr=2=/v,.. The shape of moving
kink is asymmetric, has a sharp head, and an extended oscil- We gratefully acknowledge helpful discussions with S.
lating tail. Due to discreteness effects the kink tail has aAubry, A. R. Bishop, and M. Peyrard. This work was sup-
complicated intrinsic structure, and it shows spacial oscillaported in part by grants from Hong Kong Research Grants
tions with the wave vectdk defined by the resonance of the Council (RGC) and Hong Kong Baptist UniversitfF-GR).
washboard frequency=v, with phonons. 0O.B. was partially supported by NATO Grant No.
At a large force, a localized shape moddiscrete HTECH.LG 971372 and INTAS Grant No. 97-31061.
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