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Driven kink in the Frenkel-Kontorova model
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The dynamics of dc driven chain of harmonically interacting atoms in the external sinusoidal potential~the
Frenkel-Kontorova model! is studied. It is shown that in the underdamped case the motion of the topological
soliton ~kink! becomes unstable at a high velocity due to excitation of the localized intrinsic kink mode~the
discrete shape mode, or discrete breather! in the kink tail. When the amplitude of the breather’s oscillation
becomes large enough, it decays into a kink-antikink pair. The subsequent collision of newly created kink and
antikink leads to a sharp transition to the running state, where all atoms of the chain slide over the external
potential almost freely.

PACS number~s!: 45.05.1x, 82.20.Mj, 63.20.Ry, 05.60.2k
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I. INTRODUCTION

Driven dynamics of a system of interacting atoms is
interesting physical problem as well as it has important
plications in mass and charge transport phenomena in s
and on crystal surfaces. One of important applications
driven dynamics has recently emerged in tribology stud
where a thin atomic layer is confined between two substr
which move with respect to one another~e.g., see@1# and
references therein!. Large-scale molecular dynamics simul
tion showed that this system exhibits a stick-slip motion o
an atomic scale, which is explained by a sharp~first-order!
transition of atoms in the confined layer from a ‘‘locked
state to the ‘‘running’’ state when the force applied to t
upper substrate~or its velocity! increases over some thres
old value. In the running state the atoms in the layer sl
over the substrates almost freely, so the effective frictio
force is small. If then the applied force decreases, the b
transition to the locked state takes place at a smaller force
the system exhibits hysteresis.

Such a behavior was observed in almost all systems s
ied: in three dimensional~3D! systems with realistic inter
atomic interaction@1,2#, in the isotropic two dimensiona
~2D! system@3,4#, in the anisotropic 2D system@5#, in the
one dimensional~1D! system with anharmonic~exponential!
interaction@6#, and in the classical Frenkel-Kontorova~FK!
model @7,8#, where the interatomic interaction is harmon
and the external potential is taken to be sinusoidal. Mo
over, the hysteresis persists at nonzero temperatures@1–6#.

A possible explanation of the hysteretic behavior may
done analogously to first-order phase transitions in ther
dynamics: when the velocity of upper substrate increases
temperature of confined layer may increase as well, so it
to melt finally, and this results in decreasing friction. Ho
ever, it is hard to expect that the first-order phase transi
exists in 1D systems, especially with repulsive interactio
as was observed in@6#. Therefore, it was proposed@6# that

*Electronic address: obraun@iop.kiev.ua
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the sharp transition to the running state has a solely dyna
cal origin.

Indeed, the system of interacting atoms subjected to
periodic substrate potential has the degenerated ground s
and the mass or charge transport in the system is carried
by topological defects, the local compression or expansio
the system~e.g., see@9#!. These defects are known as kink
in the 1D FK model, and as domain walls or dislocations
2D or 3D systems. However, these topological excitatio
usually cannot propagate with velocities higher than
sound speed. Thus, if one applies an external driving to
celerate the kink to a high enough velocity, its motion m
become unstable and could result in a sharp transition to
running state. This scenario was observed in the simula
@6#. The goal of the present work is to study this pheno
enon in detail and to clarify the mechanism of instability
fast topological excitations.

We consider the classical FK model with harmonic inte
action and sinusoidal substrate potential at zero tempera
Compared with the classical FK model~e.g., see@9#!, the
new issues of the model under consideration are the foll
ing: we applied a dc forcef to all atoms, and we assume als
the external viscous damping with a coefficienth, so the
motion equation is

ẍl1h ẋl2g@xl 111xl 2122xl #1sinxl2 f 50, ~1!

wherexl is the coordinate ofl th atom andg is the elastic
constant of harmonic interaction between nearest-neigh
atoms. Throughout the paper we use the dimensionless
tem of units, where the atomic mass ism51, the period of
the external potential isa52p, and its amplitude is«52. In
these units, a characteristic frequency of atomic vibration
the minimum of external potential isv051, a characteristic
time scale ist052p, and the maximum value of the extern
dc force, when the minima of sinusoidal substrate poten
disappear and topological excitations cannot exist anym
is f 51. We use periodic boundary conditions with the nu
ber of atomsN5Ns11, whereNs is the number of wells of
the periodic potential, so we have one kink~excessive atom!
inserted into the commensurate structure.
4235 ©2000 The American Physical Society
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The FK model as well as its generalizations were stud
in a number of papers~e.g., see@9# and references therein!.
Without the external periodic potential the only excitatio
of the model are acoustic phonons with the spectr
vph(k)5ck, wherec52pAg is the sound velocity. How-
ever, with the presence of the external potential the spect
becomes optical

vph
2 ~k!5vmin

2 12g~12cos 2pk!, ~2!

wherevmin
2 5(12 f 2)1/2 and the wave vectork must belong

to the first Brillouen zone,uku,1/2, so the phonon frequen
cies lie within the intervalvmin<vph(k)<vmax, where
vmax

2 5vmin
2 14g. Besides, the FK model is nonlinear an

admits two more kinds of excitations, the topological exci
tions called kinks and antikinks~they describe a local com
pression or extension of the chain respectively!, and also the
dynamical nonlinear excitations called discrete breath
~e.g., see@9#!. The kinks are responsible for the dc mobili
in the FK chain. In the continuum limit approximation
which can be used at large values of the elastic constang
@1, the motion equation~1! reduces to the well-known sine
Gordon~SG! equation, and the kinks move freely along t
system. In the discrete system the kink motion is not free,
kink must overcome some potential barriers known as
Peierls-Nabarro~PN! barriers, so the kink starts to move on
if the dc force exceeds some threshold valuef PN. Besides, at
least in the anticontinuum limit~i.e., wheng!1) the FK
model supports the existence of localized nonlinear exc
tions, the so-called discrete breathers~DBs!, which do not
carry mass along the chain, but at a high amplitude of th
vibration they may decay into a kink-antikink pair. The
newly created kinks and antikinks then move independe
and thus increase the system mobility. As will be shown
the present paper, namely the excitation of a discrete brea
at the tail of moving kink is responsible for the instability
fast kink.

One more issue of the FK model is the existence of lin
excitations of the kink itself, the so-called shape~internal!
kink modes. Namely, if one looks for a solution of the m
tion equation in the formxl(t)5xl

(kink)1c l(t) and then lin-
earizes the resulting equation forc, it may have localized
solutions that describe small-amplitude oscillations of
kink shape. In the exactly integrable SG equation the o
mode of this type is the zero-frequency Goldstone mo
which describes the translational invariance of the SG eq
tion. In the discrete FK model, such a mode also alw
exists, but now it has a nonzero frequencyVPN,vmin ,
which corresponds to the kink’s oscillation in the minimu
of the PN potential. However, when the model deviates fr
the exactly integrable one, so that the kink shape devi
from the SG form, there may appear additional shape mo
either the low-frequency shape modes below the pho
spectrum, or/and the high-frequency modes above the p
non spectrum of the discrete chain. Namely, the additio
shape modes may appear due to deviation of the subs
potential from the sinusoidal form~e.g., see@9,10# and ref-
erences therein!, due to anharmonicity of the interatomic in
teraction @11#, and even solely due to discreteness effe
@10#. Because the dc driving forcef also leads to a change o
the kink’s shape, one may expect an appearance of s
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modes for the driven kink as well. The shape modes
spatially localized objects with frequencies outside the p
non spectrum and, therefore, they correspond to long-liv
excitations of the system. This defines the importance
shape modes in system dynamics: for example, they m
temporarily store energy at kinks’ collisions. The sha
mode can be treated as a discrete breather captured b
kink as was described in@12#. The essential difference of th
captured discrete breather from the free one is that due to
kink, the captured breather is a linearly stable excitati
while the free discrete breather needs a nonzero thres
energy to be excited.

The paper is organized as follows. In Sec. II we study
driven model in the continuum limit approximation. Then
Sec. III we present the simulation results for the discr
chain. Finally, Sec. IV concludes the paper.

II. CONTINUUM LIMIT APPROXIMATION

For a large value of the elastic constant,g@1, we can use
the continuum limit approximation,xl(t)52p l 1ul(t), l
→x52p l , ul(t)→u(x,t), ul 11(t)1ul 21(t)22ul(t)
→(2p)2u9(x,t), so that the motion equation~1! reduces to
the form

ü~x,t !1hu̇~x,t !2d2u9~x,t !1sinu~x,t !2 f 50, ~3!

whered52pAg is the width of the static kink~in our system
of units d5c). For the case off 50 andh50, Eq. ~3! re-
duces to the SG equation,

ü~x,t !2d2u9~x,t !1sinu~x,t !50. ~4!

The kink ~excessive atom! solution of Eq.~4! has the form

u~x,t !54 tan21exp@2~x2vt !/dk~v !#. ~5!

The SG kink, Eq.~5! can move with any velocityuvu,c and
is characterized by the widthdk(v)5d(12v2/c2)1/2 and the
effective massmk(v)5(4/pd)(12v2/c2)21/2.

Considering the kink of Eq.~3! as a stable quasiparticl
and assuming that its parameters at nonzerof andh are the
same as those of the SG kink, the steady-state kink velo
can be found approximately from the equationvk
5 f /hmk(vk) that leads to the dependence

vk
(SG)~ f !5c

p f

A~p f !21~4h!2
. ~6!

The dependence, Eq.~6!, is shown in Fig. 1 by the dotted
curve.

A general solution of Eq.~3! can be found numerically
only. Looking for a steady-state solution in the formu(x,t)
5uk(x2vt), we obtain for the functionuk(z) the ordinary
differential equation

~c22v2!uk9~z!1hvuk8~z!2sinuk~z!1 f 50. ~7!

Introducing the new variablesj5uk(z) and w(j)5uk8(z),
Eq. ~7! reduces to the first-order differential equation

~c22v2!w8~j!w~j!1hvw~j!2sinj1 f 50. ~8!
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The kink solution corresponds to the boundary conditio
uk(2`)5uf12p, uk(1`)5uf , uk8(6`)50, or

w~uf12p!5w~uf !50, ~9!

where uf5sin21f. Close to the boundary pointsj05uf
12p or j05uf one can use the expansionw(j)
'w8(j0)(j2j0). Substituting this expansion into Eq.~8!,
we obtain

w8~uf12p!5~2hv1D !/2~c22v2!,

~10!

w8~uf !5~2hv2D !/2~c22v2!,

whereD5@(hv)214(c22v2)A12 f 2#1/2. Thus, we have to
look for a separatrix solution of Eq.~8!, which satisfies the
boundary conditions~9! and~10!, that is possible for a given
value of the parameterv5vk only. The dependencevk( f )
obtained in this way forh50.1 andg51 ~for other values of
g one can rescale by introducing the dimensionless coo
natex̃5x/Ag) is shown in Fig. 1 by the dashed curve. O
can see that it practically coincides with the SG depende
Eq. ~6!. Finally, the kink shape can then be restored from
function w(j) by the integration

z5E
uf1p

uk(z)

dj w21~j!. ~11!

The shape of the separatrix for different values of the ex
nal forcef is presented as an inset in Fig. 2, and the co
sponding shape of the kink, in Fig. 2. One can see that
shape of the driven kink is asymmetric atf Þ0, the kink
‘‘head’’ is sharper, while its ‘‘tail’’ is more extended tha
those of the SG kink, as it directly follows from Eq.~10!. It
is indicated, however, that in the continuum limit appro
mation the kink shape is monotonic for all values of t
driving force.

FIG. 1. The kink velocityvk ~normalized on the sound speedc)
as a function of the driving forcef for g51, h50.1, andN5128.
The dashed curve corresponds to the SG dependence, Eq.~6!, and
the dotted curve, to the kink velocity in the continuum limit a
proximation.
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III. DISCRETE CHAIN: SIMULATION RESULTS

A. Automodel solution

To find the dependencevk( f ) for the discrete FK chain,
we started from thef 50 equilibrium state and slowly in-
creased the force by small stepsD f 51023 with the rate
1023. After every step of changing the force, we looked f
a steady-state solution of the motion equation~1! by the
following method. First, we made the second-order Rung
Kutta ~RK! iterations for a timet852N T̃( f ) with the time
stepDt5T̃( f )/M , whereN is the number of atoms~in the
simulation we usedN5128,256, . . . ,2048),M is an integer
~we checked the results forM564, 128, 512, 1024, and
8192!, and T̃ is a parameter. At the beginning, i.e., at lo
forces f , f PN when the kink does not move, we used t
valueT̃510. We considered the kink as pinned if the velo
ity of the center of mass of the system averaged over the t
t8 ^vcm&5^( l u̇l(t8)&, was lower than 1024c. When the kink
starts to move, i.e., atf > f PN, first we used the estimation o
the delay timeT̃52p/^vcm& for the value ofT̃. Then we
started to varyT̃ and to test the value

DU~ T̃!5S (
l

$@ul 11~ t1T̃!22p2ul~ t !#2

1@ u̇l 11~ t1T̃!2u̇l~ t !#2% D 1/2

, ~12!

looking for a minimum of the functionDU(T̃) for a givent.
In more detail, we made iteration withT̃n115(11e)T̃n de-
creasinge by two times at each step starting frome50.1 and
changing its sign if necessary in order to decrease the v
DU at every stepn. The iterations continued untile
;10215. In this way we found the steady-state solution f
every value off, which corresponds to a zero of the functio
Eq. ~12!, with an accuracyDU,10213, i.e., it satisfies the
automodel condition

FIG. 2. Kink shape in the continuum limit approximation fo
h50.1 and different values of the external force:f 50.1 ~the dot–
dashed curve!, f 50.6 ~the dashed curve!, f 50.9 ~the dotted curve!,
and f 50.99~the solid curve!. Inset: the separatrix of Eq.~8! for the
same model parameters.
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ul 11~ t !5ul~ t2T!12p, ~13!

where T5T̃` is the delay time. The kink velocity is the
determined asvk52p/T. The described algorithm allows u
to calculate the dependencevk( f ) with any desired accurac
~limited by accuracy of the RK method only, which is a
proximately the same for all values of the force due to
appropriate choice ofDt) and at the same time to test th
automodel condition, Eq.~13!, checking out whether the
steady state is reached. Besides, this technique is faster
that used in@5,6#, where the mean system velocity was c
culated by averaging over long times. The algorithm with
fast Fourier transform@13# often used for such types of prob
lems, also gives too slow convergence for the single k
problem.

To find the critical forcef crit when the moving kink be-
comes unstable, we also controlled the valuevcm at every
RK step. When this value exceedsc, we returned back to the
previously saved step of changingf, decreasedD f by ten
times, and repeated the simulation. The procedure was
tinued untill the accuracyD f ;1026 was reached.

The results of simulation forg51 and h50.1 are pre-
sented in Figs. 1, 3 and 4. First, the steady-state solutio
automodel forany external forcef PN, f , f crit . Second, the
kink velocity in the discrete case is lower than that in t
continuum limit approximation because of additional~intrin-
sic! damping of kink motion due to discreteness effec
Third, while in the continuum limit approximation th
steady-state solution of moving kink exists for any forcef
,1; in the discrete chain such a solution exists only fof
, f crit , wheref crit50.650 19 for the parameters used in F

FIG. 3. Kink shape in the discrete chain as a function ofz5 l
2t/T( f ) for: ~a! a small forcef 50.025 and~b! the critical force
f 50.650191.g51, h50.1, N5128, andM564. Black circles
show instantaneous atomic positions and the solid curve co
sponds to the ‘‘automodel’’ curve. Inset: the corresponding sep
trices.
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1. At larger forces,f . f crit , the sharp transition to the run
ning state takes place. The conditionf crit,1 is satisfied and,
therefore, the sharp transition to the running state exists o
in the underdamped system,h,hmax, when the kink can
reach the critical velocity before the minima of the extern
potential disappear. For example, forg51 we found that
hmax50.385 7225.

The shape of running kink at different force values
shown in Fig. 3. These dependences can be presente
functions of one independent variablez( f )5 l 2t/T( f ),
wherel is the atomic index. Due to the automodel conditi
~13!, the dependenceul(t) calculated for a time interval 0
,t,NT for a given atom only, allows us to restore th
evolution of all atoms in the chain, because each next a
repeats the trajectory of the previous atom in the chain w
the delay timeT. Note that in agreement with the continuu
limit approximation, the discrete kink also has a sharp he
and an extended tail, although the tail of the discrete mov
kink has a complicated structure.

Comparing Figs. 2 and 3 one can see that, contrary to

FIG. 5. The critical velocityvcrit /c ~solid curves! and the critical
force f crit ~dashed curves! as functions of the damping coefficienth
for two values of the elastic constant:g51 ~diamonds! and g
51/3 ~crosses!. N5256.

e-
a-

FIG. 4. Poincare´ section u̇l vs ul 112ul . Black circles corre-
spond to instantenious atomic coordinates and velocities. The
rameters are the same as in Fig. 3~b!.
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PRE 62 4239DRIVEN KINK IN THE FRENKEL-KONTOROVA MODEL
shape of a moving kink in the continuum limit approxim
tion, the discrete kink has its own intrinsic structure. F
example, the kink tail in Fig. 3~b! exhibits a spacial period
icity with a wave vectork'1/3. The periodicity of the kink’s
tail is seen more clearly in Fig. 4, where we plot the velo
ties u̇l(t)}2u8(z) versus the relative displacementsDu(z)
5u(z11)2u(z) for all atoms for the interval 0,t,T. For
a given timet, such a picture corresponds to the strobosco
map of the system. Recall that in the continuum limit a
proximation this dependence should be linear, beca
u̇(x,t)52vku8(x,t) in this case.

FIG. 6. The critical valuesvcrit andhcrit vs the elastic constantg
for a fixed value of the external forcef 50.7. N5256.
r

-

ic
-
se

B. Instability of fast kink

To understand a mechanism of instability of fast kink
first we studied the dependence of critical values on sys
parameters. Figure 5 demostrates the critical kink veloc
vcrit as a function of the external dampingh for a fixed value
of the elastic constantg. The instability exists only for the
underdamped case,h,hmax, when the kink can reach th
critical velocity, which is close to the sound speedc, at some
force f crit,1. At large frictions the maximum kink velocity
is lower thanc even in thef→1 limit, and the transition to
the running state takes place atf 51 only, simply because
the minima of the external potential disappear and all ato
go to the running state simultaneously.

In Fig. 6 we present the dependences ofvcrit andhcrit on
the discreteness parameterg for a fixed value of the externa
force f 50.7. In this simulation we used the following algo
rithm @14#. First, we prepared the initial configuration b
relaxing the equidistant configuration atf 50 for a given
value ofg. Then we applied the dc forcef 50.7 and allowed
the system to reach a steady state, waiting a transient
t tr532t0. At the beginning, the external damping was tak
to be large,h51 ~recall that the characteristic frequency
atomic vibration isv051). After that we decreased th
damping coefficienth with small steps~each new value ofh
was obtained from the previous one by dividing ov
1.027 46, so we made 256 steps for changingh from h51 to
h51023), and at each step we first waited for a time 32t0 to
allow the system to reach a new steady state, and then fo
next time periodtav532t0 we measured the average syste
velocity. From these simulations one can see that the tra
-

FIG. 7. Instantaneous system
configuration ~stroboscopic map!
just before the kink destroying
(vk'vcrit) for two different values
of the damping coefficient (h
50.036 840 and h50.135 721)
and two values of the elastic con
stant (g51/3 andg51).
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tion to the running state takes place when, due to the rela
istic narrowing, the kink widthdk5d(12v2/c2)1/2 becomes
small, dk,a, so that the discreteness effects~oscillation of
the moving kink in the PN potential! have to become too
large.

In Fig. 7 we plot the stroboscopic map of the running ki
for different values of the parametersg andh for the external
force just before the kink is destroyed, whenvk
→vcrit(g,h). One can see that the kink tail atf 5 f crit always
demonstrates a periodic structure with relatively simple
tional wave vectors likek51/2, k51/3, etc.

C. Kink’s tail

The periodicity of the kink’s tail may be explained sim
larly to the work of Peyrard and Kruskal@15#. In the frame
comoving with the kink, the phonon spectrum is modifi
due to Doppler’s effect,Vph(k)5vph(k)2kvk . The kink
may be followed by a standing wave~the wave comoving
with the kink with the same phase velocity! if

Vph~k!50. ~14!

This equation always has one or more solutions as show
Fig. 8 in the extended Brillouin zone scheme:uku,`. At
large kink velocitiesvk.2vmax, this solution corresponds t
the wave vector within the first Brillouin zone@see curve~c!
in Fig. 8#. At lower kink velocities the solution belongs t
the second Brillouin zone@curve ~b! in Fig. 8#, then to the
third Brillouin zone, etc. In the restricted Brillouin zon
scheme, whereuku,0.5, we have to look for solutions of th
equationVph(k)5nvk , wheren50,61, . . . is aninteger.
The graphical solution in this scheme is shown in Fig. 9. T
solution withn50 corresponds to the resonance of the wa
board frequencyvwash5vk with phonons, so the solution
with nÞ1 may be called ‘‘super-resonances’’@7#. The de-
pendencekres(vk) obtained by numerical solution of Eq.~14!
is shown in Fig. 10. Note that at small kink velocities E
~14! has more than one solution. For example, for the c
shown by curve~a! in Fig. 8, the lowest root corresponds
the oscillation behind the kink~the group velocity of
phononsvgr5dvph(k)/dk is negative!, and the second on
to the oscillation ahead of the kink (vgr.0). Indeed, from
Fig. 11 one can see that while at large velocity the k
shows oscillations in its tail only, at low velocities there a
also oscillations ahead of the moving kink.

FIG. 8. Graphical solution of Eq.~14! in the extended Brillouin
zone scheme for:~a! f 50.025,~b! f 50.1, and~c! f 50.5.
v-
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e
-

.
e
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To show that the described resonances are responsibl
the tail’s oscillation, we calculated the spacial Fourier tra
form of the kink shape

G~k!5T21E
0

T

dt U(
l 51

N

u̇l~ t !ei2p lkU. ~15!

The functionG(k) is shown in Fig. 12. Then we found th
maxima of G(k) for different kink velocities and plotted
their positions in Fig. 10. One can see that the short-w
component of kink tail oscillation is characterized by t
wave vector which coincides with that obtained from t
solution of Eq.~14! ~see triangles in Fig. 10!. In particular,
for the forcef 50.65, which is close to the critical force, w

FIG. 9. Graphical solution of Eq.~14! in the restricted Brillouin
zone scheme for:~a! f 50.025, vk51.096; ~b! f 50.1, vk53.133;
~c! f 50.5, vk55.204; and~d! f 50.6502,vk55.648.

FIG. 10. The dependencekres(vk), wherekres is the solution of
Eq. ~14!. Triangles and circles show the positions of maxima of t
Fourier transformG(k) of the kink’s shape. The parameters are t
same as in Fig. 1.
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obtained from Eq.~14! that k'1/3 in agreement with peri
odicity of the kink’s tail in Figs. 3~b! and 4.

To study the resonances in more details, we also ca
lated the response functionF(k,v) in the following way. We
solved simultaneously the unperturbed motion equation~1!
and the disturbed equation, where a small noised f l(t)
5er l(t), wheree51024 andr l(t) is a random number uni
formly distributed within the interval21,r l(t),1 was
added to the external forcef. Then we made the spatial
temporal Fourier transform of the difference of the disturb
and undisturbed solutionsF(k,v). @In fact, we simulta-
neously used six disturbed equations with different initializ
tions of the random number generator and then avera
the calculatedF(k,v) values. Besides, to minimize
drift of the kink velocity due to noise, we orthogonalized t
noise to the velocity vector $u̇l(t)%, r l(t)→r l(t)
2u̇l(t)( l@ u̇l(t)r l(t)#/( l u̇l

2(t)]. In Fig. 13 we plot lnuF(k,v)u
as a gray scale map. Comparing these pictures with the

FIG. 11. Normalized atomic velocitiesu8(z)5u̇/T for the kinks
shown in Fig. 3 for~a! f 50.025 and~b! f 50.650 191.

FIG. 12. Fourier transformG(k) of the kink shape forg51,
h50.1, and different forces:~a! f 50.3 (vk54.543), the dotted
curve; ~b! f 50.5 (vk55.204), the dashed curve; and~c! f
50.650 191 (vk55.648), the solid curve.
u-

d

-
ed

e-

stricted Brillouin zone~Fig. 9! we conclude that namely th
excitation of phonons is responsible for the oscillating ki
tail. However, Fig. 13 shows one more very important res
close to the critical velocity one can see from Fig. 13~c! and
especially Fig. 13~d! that the resonance is spread. This ind
cates that just before the instability, the excitation becom
spatially localized.

Another indication that the kink shape has a complica
structure just close to the critical velocity, follows from th
Fourier transform, Eq.~15!, of u̇l(t). As can be seen from
Fig. 12, close tovcrit the functionG(k) shows an additiona
peak corresponding to spatial oscillation of the tail with
small wave vectork,0.1 and frequencyv!vmin . This new
branch is also shown in Fig. 10 by circles. We interpret th
effects as an indication of the appearance of a shape m
~discrete breather! of the moving discrete kink just before
is destroyed. The same conclusion follows also from the F
quet analysis described in the next Sec. III D.

D. Floquet analysis

The motion equations~1! can be rewritten in a matrix
form for the 2N vectorX[$xl ,ẋl% as

Ẋ5G~X!. ~16!

Let Xkink(t) be the steady state~automodel! solution of Eq.
~16!, and let us look for a general solution in the for
X(t)5Xkink(t)1Y(t), assumingY(t) to be small. ThenY(t)
has to satisfy the linearized equation

Ẏ~ t !5B@Xkink~ t !# Y~ t !, ~17!

whereB(t)5dG/dX. A formal solution of this equation is

Y~ t !5C~ t,0! Y~0!, ~18!

FIG. 13. The response functionF(k,v) as a gray scale map.g
51, h50.1, N5128, andM564, the force values in~a!–~d! are
the same as in Fig. 9.
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where the matrix

C~ t,0!5expE
0

t

dt B~ t ! ~19!

corresponds to thetime-orderedmatrix exponent which is
defined as the limit of product

exp~Dt BM !exp~Dt BM21! . . . exp~Dt B1!, ~20!

whereBk5B(k Dt), Dt5T/M , and the limitM→` is as-
sumed.

Calculation of the expression~20! is connected with a
large number of matrix multiplications. Instead, from E
~19! one can derive the differential equation for the mat
C(t,0)

Ċ~ t,0!5B~ t ! C~ t,0!, C~0,0!5J, ~21!

whereJ is the 2N32N identity matrix, and then to solve Eq
~21! with the RK method. This procedure is about ten tim
faster than that with the exponents’ multiplication. To sim
plify the calculation, we also used the substitution

Y~ t !5Ỹ~ t !exp~2ht/2!, ~22!

so that Eq.~21! takes the form

d

dt
C̃~ t,0!5B̃~ t ! C̃~ t,0!, C̃~0,0!5J, ~23!

whereC̃(t,0)5C(t,0)exp(ht/2), and the matrixB̃(t) has the
form

B̃~ t !5S 0 I

A~ t ! 0D , ~24!

whereI is theN3N identity matrix, and the matrixA(t) is
defined by

A~ t !5S a1~ t ! 1 0 . . . 0 1

1 a2~ t ! 1 . . . 0 0

0 1 a3~ t ! . . . 0 0

A A A � A A

1 0 0 . . . 1 aN~ t !

D
~25!

with al(t)5222cosxl
kink(t)1(h/2)2.

The Floquet technique deals with the stability of time p
riodic solutions. In the model with periodic boundary cond
tions we have to choose the timeNT as the period of kink
motion along the whole system. Integration of Eq.~23! over
the periodNT determines the Floquet matrixC̃(NT,0) which
linearly relatesỸ(NT) to its initial value Ỹ(0). Then, we
have to solve the corresponding eigenproblem,

C̃~NT,0! Ỹ5l̃ Ỹ. ~26!
.

s
-

-

The timeNT in Eq. ~26! can be reduced toT with the help of
the automodel condition~13! of the steady-state solution
Indeed, taking into account the automodel condition, one
write

A~ t1T!5p A~ t ! p21, ~27!

wherep is the cyclic shift matrix

p5S 0 0 . . . 0 1

1 0 . . . 0 0

0 1 . . . 0 0

A A � A A

0 0 . . . 1 0

D . ~28!

The matrixC̃ is transformed correspondingly as

C̃~ t1T,0!5P C̃~ t,0! P21, ~29!

whereP is the block matrix

P5S p 0

0 pD . ~30!

So, we have

C̃~NT,0!5C̃@NT,~N21!T#

3C̃@~N21!T,~N22!T# . . . C̃~T,0!, ~31!

or by usingPN5I , owing to periodic boundary conditions
we finally obtain

C̃~NT,0!5@P21C̃~T,0!#N. ~32!

Thus, we can use the matrixS(T)5P21C̃(T,0) and look for
a solution to the eigenvalue problemS(T)Ỹ5mỸ. Then l̃
5mN, and finally the eigenvalues of the primary matr
C(NT,0) are l5l̃exp(2ht/2). Note that the substitution
Eq. ~22!, does not affect the eigenvectors of the problem

The procedure described above was performed for dif
ent time steps of the RK methodDt5T/M with M
564,128, . . . ,8192 for the chain ofN5128 atoms. We de-
termined the dependence of the accuracy of the solution
the eigenvalue problem on the accuracy of calculation of
steady-state kink shape using, as the test condition, the
that for the exact solution one of the eigenvalues must
equal tol151, and the corresponding eigenvector must
proportional toẊkink(t). We found that decreasing the tim
stepDt leads to some improvement of the results~for ex-
ample, ul121u;1024 for M564 and ul121u;10210 for
M58192, correspondingly!, but the qualitative picture re
mains unchanged, so in order to reduce the computatio
time we performed most of calculations withM564.

The results of the calculation are the following~see Figs.
14–16!:

~1! All eigenvaluesl lie symmetrically with respect to the
circle of radiusR5exp(2hT/2) ~recall thatT depends on the
force f ) and have properties similar to those for the Ham
tonian problem, where the corresponding Floquet matrix
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symplectic. Namely, we determined that ifl is an eigen-
value, thenl* , R2/l, andR2/l* are also eigenvalues wit
the same numerical accuracy.

~2! The two eigenvalues are always real,l151 @this
trivial solution corresponds to the translational, or pha
mode with the eigenvectorY1(t)}Ẋkink(t)] and, symmetri-
cally to it, l185exp(2hT). Note that for time-reversible~e.g.,
Hamiltonian! systems these eigenmodes are twice dege
ated and both correspond to thel51 eigenvalue~e.g., see
@16#!.

FIG. 14. Floquet eigenvalues forg51, h50.1, f 50.65, N
5128, andM564. The circle corresponds toR5exp(2hT/2).

FIG. 15. Evolution of the Floquet eigenvalues withf changing:
~a! f 50.4, ~b! f 50.5, ~c! f 50.6, ~d! f 50.645,~e! f 50.65, and~f!
f 50.650 191.
e

r-

~3! At small forces,f ! f crit , all other eigenvalues lie on
the circleR. With the increase off some of eigenvalues ma
‘‘collide’’ and go out of the circle, probably due to parame
ric resonances, but then they come back to the circle.
cause the eigenvalues do not go outside of theR51 circle,
this effect does not lead to an instability as it does in Ham
tonian systems.

~4! At high forces close to f crit ~namely, for f
.0.646 676 04 for the chosen set of parameters!, another
pair of eigenvaluesl2 andl28 become real and leave theR
5exp(2hT/2) circle as is demonstrated in Fig. 15. Atf
→ f crit this second pair approaches the first one,l2→l1 and
l28→l18 ~see Fig. 16!. The corresponding eigenvectors al
tend to one another. A general Floquet theory states
when two eigenmodes coincide having thel51 eigenvalue,
the corresponding steady state of the system becomes
stable~e.g., see@17#, Chap. I, theorem 3.2!.

Evolution of the eigenvaluesl2 and l28 and the corre-

sponding eigenvectorsỸ2 andỸ28 with changing dc forcef is
presented in Figs. 16 and 17. One can see that at the be
ning, when thel2 mode just emerges@Fig. 17~a!#, it corre-
sponds to an almost pure phononic~nonlocalized! mode, but
with increasingf the degree of its localization increase
Thus, thel28 mode can be considered as the discrete brea
solution excited by the moving kink. From the inset in Fig.
one can see also that just beforef crit the kink velocity sharply
increases,d2vk /d f2 changes its sign, anddvk /d f tends to
infinity at f→ f crit (dvk /d f'10.5 at f 50.65 anddvk /d f
'2.893103 at f 50.650 19).

E. Kinetics after kink destroying

To study the scenario of kink destroying in details, w
started from the steady state corresponding to the kink

FIG. 16. Dependence of eigenvalues and eigenvectors on
forcef: ~a! the eigenvaluesl1 , l18 , l2, andl28 , and~b! the distance

between the corresponding eigenvectorsD5uuỸ12Ỹ2uu
5$(2N)21( l 51

2N @(Ỹ1) l2(Ỹ2) l #
2%1/2 andD85uuỸ182Ỹ28uu.
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tion with vk'vcrit ( f 50.65 for the parametersg51 andh
50.1) and then slightly increased the force~to the valuef
50.651). The results of simulation are presented in Fig.
where we plotul(t) versus the indexl for different time
moments, each next curve being slightly shifted upstairs
to the right. One can see that the scenario is the follow
The first event is the creation of a new kink-antikink pair
the tail of the primary kink. The newly created antikin
moves to the left, while the primary kink and the new
created kink produce the ‘‘double’’ kink which moves as
whole. Then one more kink-antikink pair is created in the t
of the double kink; again the second antikink moves to
left, while the new kink plus the double kink produce th

FIG. 17. The eigenvectorỸ2 for different force values:~a! f
50.646 676 04, ~b! f 50.6468, ~c! f 50.648, and ~d! f

50.650 191 9086. ~e! shows the eigenvector Ỹ1 for f
50.650 191 9086; note that it looks practically the same for
forces used in the present figure. The curves were obtained a
solutions of linearized motion equation with initial condition corr
sponding to the eigenvectorY2 so they may be treated as atom

trajectories corresponding to thel2 eigenmode. TheỸ2 curves are
artificially shifted upstairs to be shown all in one figure.

FIG. 18. Evolution of the system atf 50.651 starting from the
initial state corresponding to the steady state forf 50.65, whenvk

'vcrit . The system parameters areg51, h50.1, andN51500.
,

d
.

il
e

‘‘triple’’ kink. Then, the first antikink creates behind itsel
one more kink–antikink pair. The kink from this last creat
pair moves to the right and finally meets with the seco
antikink. After their collision an avalanche starts to grow.

Figure 19 shows the evolution of the total system veloc

v tot(t)5( l u̇l(t) during this process. When the first kink
antikink pair is created,v tot increases two times~see details
in inset of Fig. 19!, then it again increases at the next cr
ation events, and finally, when the avalanche starts to gr
v tot begins to increase linearly with time with the veloci
2c, so that both fronts of the running domain move with t
sound speed.

Figure 20 demonstrates the shape of the growing dom
of running atoms. In this figure we plot the functionr l(t)

ll
the

FIG. 19. The dependencev tot(t) for the system evolution atf
50.651. The solid line describes the fitv tot(t)52c(t2t0). Inset:
the same in the logarithmic scale. Parameters are as in Fig. 18

FIG. 20. Structure of the running domain at a fixed time m
ment: ~a! the density of excessive atomsr l(t)52@ul 11(t)
2ul(t)#/(2p)2 and ~b! the atomic velocitiesv l(t). Parameters are
as in Fig. 18.
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52@ul11(t)2ul(t)#/(2p)2, which describes the density of ex
cessive atoms in comparison with the commensurate st
ture, and the atomic velocitiesu̇l(t) for a fixed time moment.
One can see that in the running domain the atomic veloc
are almost constant and are approximately equal to the m
mum atomic velocityf /h56.5, and that ahead of the fron
of the running domain, one can see the running triple k
and the double antikink.

The shape of the functionr(x,t) in the running domain
may be explained in the following way. Differentiating E
~3! over x, we obtain for the function r(x,t)5
2u8(x,t)/2p the following equation:

r̈1hṙ2r91@cosu~x,t !# r50. ~33!

Averaging this equation over time for a periodT, we obtain
for a slowly varying component of the density the followin
equation:

r̄9~x!1kr
2r̄~x!50, ~34!

wherekr
252^cosu(x,t)& and 0,kr

2!1. Thus, in the running

domainr̄(x)}sinkr(x2xc), wherexc is the center of the run
ning domain.

IV. CONCLUSION

Thus, we have studied the underdamped driven dynam
of topological excitations~kinks! in the discrete SG chain
and showed that the steady-state kink motion is always
tomodel, each atom repeats the trajectory of the previ
atom with the time delayT52p/vk . The shape of moving
kink is asymmetric, has a sharp head, and an extended o
lating tail. Due to discreteness effects the kink tail has
complicated intrinsic structure, and it shows spacial osci
tions with the wave vectork defined by the resonance of th
washboard frequencyv5vk with phonons.

At a large force, a localized shape mode~discrete
u,

s.
c-

s
xi-

k

cs

u-
s

cil-
a
-

breather! emerges in the kink tail. With increasing kink ve
locity, the amplitude of this excitation increases too, and
some critical velocity the DB decays into the kink–antikin
pair. This instability exists only in the underdamped syste
h,hmax,0.5, when the kink can reach the critical veloci
at a force lower thanf 51. In the overdamped system th
kink velocity remains lower than the critical one even in t
f→1 limit, so the sharp transition cannot emerge.

The emission of kink-antikink pairs in the tail of the fa
kink leads to the sharp transition to the running state j
after the first collision of the secondary kink and antikink.
the collision, the atoms in the collision region go to the ru
ning state, and this running domain then grows with t
sound speed. Atoms in the running domain have veloci
close to the maximal value, while the atomic density ha
cosine profile. Besides, we observed that the double
triple fast kinks in the front of the running domain rema
stable, at least on the time scale of our simulation.

Although most of the simulation presented in the pap
was performed for given parameters of the system (g51 and
h50.1), we determined that the described scenario rem
the same for other parameters as well. Thus, we conc
that the scenario described in the present work~i.e., the ex-
citation of the discrete breather in the tail of the fast movi
topological excitation, the decay of this DB into a pair
new topological excitations, then their collision with the su
sequent growing of the running domain! should be generic
for a wide class of nonlinear systems.
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