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Kink’s internal modes in the Frenkel-Kontorova model
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We consider a generalized Frenkel-Kontorova model, describing the dynamics of a chain of particles in a
periodic substrate potential, and analyze the effect of discreteness on the existence and properties of internal~or
shape! modes of kinks, topological excitations of the chain. In particular, we show that kink’s internal modes
can appearnot only belowbut also abovethe phonon spectrum band and, in the latter case, the localized mode
describes out-of-phase oscillations of the kink’s shape. For the sinusoidal on-site potential, when the model is
described by the discrete sine-Gordon equation, we reveal, in sharp contrast with the continuum limit, the
existence of the kink’s internal mode in a narrow region of the discreteness parameter. We apply two different
analytical techniques to describe the cases of weak and strong coupling between particles, explaining qualita-
tively and even quantitatively the main features of the kink oscillations observed in numerical simulations. We
also discuss the effect of nonlinearity on the existence and properties of kink’s internal modes and show, in
particular, that a nonlinearity-induced frequency shift of the lattice vibrations can lead to the creation of the
nonlinear kink’s internal modes, which, however, slowly decay due to a generation of radiation through
higher-order harmonics.@S1063-651X~97!11010-8#

PACS number~s!: 46.10.1z, 63.20.Ry, 66.30.Hs, 03.40.Kf
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I. INTRODUCTION

The well-known Frenkel-Kontorova~FK! model, first in-
troduced in 1938 for describing dislocations in solids@1#,
was successfully used in investigations of a number of ph
cal phenomena such as charge-density waves, adsorbed
ers of atoms, domain walls in ferro- and antiferromagne
systems, crowdions in metals, and hydrogen-bonded m
ecules~see, e.g., the review paper@2# and reference therein!.
The classical FK model describes a chain of linearly coup
particles ~‘‘atoms’’ ! subjected to an external periodic su
strate potentialVsub(u). The Hamiltonian of the FK mode
can be written in the form

H5(
l

F1

2 S dul

dt D 2

1Vsub~ul !1
g

2
~ul 112ul !

2G , ~1!

whereul is the displacement of thel th particle from its equi-
librium position andg is the coupling constant between pa
ticles in the chain. We use a system of dimensionless u
such that the particle’s mass becomes equal to 1 and
period and amplitude of the substrate potentialVsub(u) are
as52p and«s52, respectively. The minimum of this poten
tial is chosen asVsub(0)50. For the classical FK model, th
potentialVsub(u) is assumed to be of the simplest, sinusoid
form

Vsub~u!512cosu. ~2!

The Hamiltonian~1! generates the equations of motion
561063-651X/97/56~5!/6050~15!/$10.00
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d2ul

dt2
2g~ul 111ul 2122ul !1Vsub8 ~ul !50, ~3!

where we defineVsub8 (u)[dVsub(u)/du. Because of the to-
pology of the potentialVsub(u), the system possesses dege
erate ground states for which all particles occupy all mini
of the potential and then the simplest excited state isa kink
that connects two neighboring states. The kinks were in
duced by Frenkel and Kontorova@1# to describe crystal dis-
locations. Their exact shape in a discrete FK chain is
known in an explicit analytical form because the discrete
of coupled nonlinear equations~3! cannot be solved analyti
cally in a general case. From the physical point of view
kink can be viewed asa local defectand therefore one may
wonder how such defects affect the dynamical properties
the chain, in particular the spectrum of its small-amplitu
excitations.

In the limit of strong coupling, i.e., wheng@1, an ap-
proximate solution can be obtained in the framework of
continuum approximationl→x5 las and ul(t)→u(x,t), so
that Eq.~3! reduces to the partial differential equation~some-
times called the nonlinear Klein-Gordon equation!

]2u

]t2 2d2as
2 ]2u

]x2 1Vsub8 ~u!50, ~4!

whered5Ag defines the kink’s width, in units of the perio
of the substrate potential. For the sinusoidal substrate po
tial ~2!, Eq. ~4! becomes the well-known exactly integrab
sine-Gordon~SG! equation@3#. Then, the kinks of the FK
6050 © 1997 The American Physical Society
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56 6051KINK’S INTERNAL MODES IN THE FRENKEL- . . .
model in the continuum limit are described by the solit
solutions of the SG equation and the spectrum of all lin
modes around the kink can be found in an explicit form
includesa continuum frequency bandassociated with nonlo
calized propagating solutions~lattice phonons!, modified by
the presence of the kink. In addition, the small-amplitu
excitation spectrum includesthe zero-frequency localize
mode, the so-called Goldstone mode, associated with
translational invariance of the SG model.

When the potentialVsub(u) deviates from the sinusoida
shape~2!, the spectrum of the continuum model can
modified qualitatively by the appearance of additional loc
ized modes, orkink internal modes, with frequencies below
the lowest phonon frequency, i.e., in the gap of forbidd
frequencies for phonon modes@4,5#. The existence of thes
localized modes has important consequences on the kink
namics because they can temporarily store energy ta
away from the kink’s kinetic energy, which can later be r
stored again in the kinetic energy. This gives rise toresonant
structuresin kink-antikink collisions@5#. The similar effect
is known for the kink-impurity interactions@6# where an im-
purity mode plays the role of the kink’s internal mode.

For lattice models very little is known about the kink
internal modes. The only mode that has been investiga
extensively so far is the translational mode, or the Goldst
mode, which is important because the kink breaks the tra
lational invariance. In a discrete lattice, the frequency of t
mode increases from zero~which corresponds to the con
tinuum limit! as discreteness increases; this is associ
with the existence of a potential barrier in a discrete latt
that must be overcome to move the kink along one lat
spacing@7#. This potential is known as the Peierls-Nabar
~PN! potential in the context of the dislocation theory. Wh
the potentialVsub(u) deviates from the sinusoidal shape, ne
features appear. In particular, the PN barrier was found
oscillate as a function of the coupling parameterg ~or the
kink’s width! @4#. These oscillating dependence correspon
to an exchange of stability between two positions of the k
in a lattice, one centered on a particle site and the o
centered at the middle between two neighboring sites.

For other types of localized kink modes that may app
for some potential shapes, almost nothing is known about
role of discreteness; it is this aspect that we want to ana
in this paper. First of all, we would like to note that discre
ness has a qualitative effect on the continuum spectrum
lattice. While in the continuum model the phonon band e
tends to infinity in the direction of high frequencies, it
bounded from above for a discrete lattice due to the fact
there exists the minimum oscillation wavelength defined
the lattice spacing. The existence of an upper region forb
den for the propagating~or phonon! modes opens a new
space for the existence of the kink’s internal modes.
show in this paper that, in this domain, kink modes of t
optical type, i.e., where adjacent particles move out of pha
may exist for some potential shapes. Finally, we go bey
the linear approximation for the kink’s internal modes a
studynonlinear kink internal modes. We show that, even in
the case of a harmonic coupling between particles and for
sinusoidal potential, nonlinear kink internal mode can app
below or above the phonon band.
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The paper is organized as follows. In Sec. II we presen
general discussion of the kink’s internal modes that allows
to understand the physics and some properties of this kin
localized excitation around the kink. Then, in Secs. III a
IV we summarize our results for the cases ofweak(g!1)
and strong (g@1) interparticle interactions, respectivel
Section V includes the analysis of the effect of nonlinear
on the kink’s internal mode. Section VI concludes the pap

II. KINK’S INTERNAL MODES:
A QUALITATIVE PICTURE

A. Kink’s internal modes as impurity modes

Before attempting a detailed analysis of the spectrum o
kink in a generalized FK model using analytical and nume
cal methods, it is useful to get a general feeling of the ph
ics and results. This can be achieved by means ofqualitative
approachdescribed in this section.

In the present paper we consider, for definiteness, the
ample of the generalized FK model with a nonsinusoi
substrate potential of the form

Vsub~u!5
~12r !2~12cosu!

11r 212r cosu
. ~5!

This model of the substrate potential was introduced by P
rard and Remoissenet@4#, so that below we refer to the po
tential ~5! as the Peyrard-Remoissenet~PR! potential. The
shape of the potential is defined by the parameterr , ur u,1.
For r .0 the potential~5! has flat bottoms separated by th
barriers, while forr ,0 it has the shape of sharp wells sep
rated by flat wide barriers. For small values ofr , the poten-
tial reduces to the double-sine-Gordon~DSG! potential@8#

Vsub~u!}2cosu1r cos~2u!. ~6!

When the particle displacements are small, i.e.,
uul u!as , we can apply the harmonic approximation repla
ing Vsub(u) by its truncated Taylor serie

Vsub(u)' 1
2 Vsub9 (0)u2. The solutions of the equations of mo

tion are then plane waves orphonons, ul(t)
}exp$ivph(k)t2 ik l %, with the spectrum defined as

vph
2 ~k!5vmin

2 12g~12cosk!, vmin
2 5

~12r !2

~11r !2 , ~7!

k being the dimensionless wave number,uku<p. The linear
spectrum~7! of the discrete FK model is bounded from
above as well as from below and it occupies the reg
vmin<v<vmax, where

vmin[vph~0!5AVsub9 ~0!5
~12r !

~11r !
,

vmax[vph~p!5Avmin
2 14g.

In order to understand how a kink can modify the phon
spectrum of linear modes in the lattice, first we recall t
effects produced bya localized impurityin a harmonic lat-
tice. Let us consideran isotopic impurity, such that the mass
m0 of one of the lattice particles, e.g., that with the numb
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n50, differs from all other masses,m51. In the absence o
the interatomic coupling~i.e., at g50!, the impurity oscil-
lates with the frequencyv imp

(0) 5AVsub9 (0)/m0, which is dif-
ferent from the frequency of the lattice particles~which in
the case of a lattice coincides with the minimum edge of
phonon band! vmin . The impurity frequency is larger for th
case of a light-mass impuritym0,m and smaller in the cas
of a heavy-mass impuritym0.m. Including the interatomic
interactiongÞ0, we find that the impurity frequency ge
shifted v imp

(0)→v imp5v imp
(0) 1Dv, whereDv has the sign of

the mass differenceDm5m02m. If the impurity frequency
lies within the phonon spectrum band, i.e
vmin<vimp<vmax, the corresponding impurity-induce
mode is calleda virtual mode, or quasimode. Otherwise,
when v imp,vmin or v imp.vmax, the impurity mode be-
comesa local modeand oscillations near the impurity deca
exponentially. The local mode has an infinite lifetime in
harmonic approximation@9–11#.

Introducing an impurity into a lattice always leads to t
creation of one impurity mode, either a virtual mode, for
weak perturbation of the chain, or a local mode, for stron
perturbations. Because a change of one of the lattice ma
does not change the total number of the degrees of freed
the degree of freedom associated with the impurity mo
must appear from one of the phonon modes of the harm
lattice. In the case of a local mode, the localized eigenm
can split from the bottom of the phonon spectrum band in
casem0.m or from the top of the phonon spectrum band f
m0,m. Similarly, a lattice withN impurities should haveN
impurity modes, but only some of them may correspond
spatially localized modes.

Now, let us consider the FK chain without impurities b
with a single kink. The kink~or antikink! corresponds to a
topologically stable local compression~or expansion! of the
chain, so that it is an extended object with a widthd5Ag.
Clearly, near the kink’s core the lattice is in a perturbed st
and the number of the corresponding ‘‘perturbed particle
M is proportional to the kink’s widthM;d5Ag. Thus we
can expect the existence ofM internal kink modes~similar to
the impurity modes in a lattice with defects!, either virtual or
local. The lowest frequencyv1 corresponds to the mod
where particles oscillate in phase, while the highest f
quencyvM corresponds to the out-of-phase particle osci
tions. Because the kink’s core should includeat least two
particles M>2, this simple reasoning suggests that we c
always expect the existence of at least two internal k
modes. The mode with the lowest frequency correspond
oscillations of the kink as a whole in a potential well creat
by the PN potential @12,13# with the PN frequency
v15vPN. This mode reduces to the well-known Goldsto
mode withv150 in the continuum limit, i.e., wheng@1.
For the SG model, the frequency of the second internal k
modev2 coincides with the minimum frequency of the ph
non spectrum bandv25vmin . Because the density of th
phonon states of a harmonic lattice tends to infinity at
phonon spectrum edges~see, e.g.,@10#!, the second mode o
the SG kink is delocalized and therefore it cannot be
served. But for a nonsinusoidal substrate potential, suc
the PR potential~5! or the DSG potential~6!, the second
mode exists as a local mode forr ,0 or as a virtual mode for
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r .0. Moreover, for the PR substrate potential~5! the num-
ber of local internal kink modes increases with an increase
the valueur u for r ,0 @5#. Note that the low-frequency local
ized modes~except the first one called the PN mode! are
known as the kink’s shape modes first observed for thef4

model ~see, e.g., Ref.@5#!. The kink’s shape mode with the
frequencyv2 has the simple physical interpretation for th

DSG potential~6! at r ,2 1
4 , when the usual kink~2p kink!

can be regarded as that consisting of two coupledp subkinks
@5,14–16#. Such a kink can be interpreted as a ‘‘molecule
consisting of two ‘‘atoms’’~p subkinks! and thev2 mode
corresponds to relative oscillations of these atoms.

B. Effect of discreteness and shape of potential

In this subsection we discuss the qualitative features
the kink oscillations and the property of kink’s intern
modes in a discrete lattice. As is already understood~see
@7,17,18#!, discreteness decreases the kink’s effective wi
and therefore one can expect that it will increase the
quency of the kink’s internal mode. This is the case of t
zero-frequency Goldstone mode of the continuum mod
which in a discrete lattice becomes the nonzero PN m
0,v15vPN,vmin . However, the results presented belo
show that the simple qualitative argument connecting
kink’s width and the frequencies of low-frequency loc
modes~kink’s internal modes! is not always valid and we
display some interesting unexpected features even for
simplest case of the sinusoidal substrate potential.

Another important feature of any discrete model is t
existence of the upper cutoff frequency of the phonon ba
vmax,`. As a result, one can expect not only low-frequen
~LF! kink internal modes, but also high-frequency~HF!
modes with the frequencies above the maximum freque
of the phonon band,vmax. We show below that this is indee
the case for some shapes of the substrate potential an
describe these localized modes analytically, in the case
weak and strong interatomic coupling.

When the amplitude of kink oscillations increases, w
should take into account nonlinear~or anharmonic! effects.
For impurity modes nonlinear effects lead to a decrease
the frequency of the LF impurity mode and, corresponding
to an increase of the frequency of the HF mode, provided
oscillation amplitude grows@11#. This effect was analyzed in
detail for the lowest PN mode by Boeschet al. @19#. Namely,
an increase of the amplitude of the kink’s oscillations at
bottom of the PN potential leads to a decrease of the
quency from the valuev1(0)5vPN to zero, at some critica
value. A decrease of the frequency was also observed for

shape modev2 in the DSG model forr ,2 1
4 , when the 2p

kink can be interpreted as that consisting of two coupledp
subkinks@14–16#.

Figures 1~a!, 1~b!, 2~a!, and 2~b! show some examples o
the linear spectrum of kink excitations in the generalized
model with the PR potential~5!, calculated numerically. To
obtain these results, first we determine the static configu
tion of particles, corresponding to a kink, by minimizing th
energy of the chain with the corresponding boundary con
tions. When all the equilibrium positionsul

eq of the particles
in a chain with a kink become known, we study the spectr
of small-amplitude oscillations around this state by looki
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56 6053KINK’S INTERNAL MODES IN THE FRENKEL- . . .
for a solution in the formul5ul
eq1v le

ivt. We assume tha
the perturbationv l is sufficiently small (v l!a) and ignore
all nonlinear terms in the equations of motion forv l . Intro-
ducing this ansatz into Eq.~3!, we obtain a system of linea
equations that can be written in a matrix formBv5v2v,
with v[$v l%, where a triagonal matrixB is the dynamical
matrix of the lattice in the presence of a kink an
B( l ,l )52g1Vsub9 (ul

eq), B( l ,l 61)52g. This matrix is di-
agonalized numerically for a chain ofN particles with fixed
ends. The value ofN is chosen large enough to avoid pe
turbations due to boundary effects~typically N5200, but it
has been extended to 600 for broader kinks and larger va
of d!. Its eigenvalues give the frequencies of the sm
amplitude oscillations around the kink and the correspond
eigenvectors describe the spatial profile of each mode.

Figure 3~a! shows one example of the spectrum of a d
crete kink atr 520.05 andd5Ag50.8. The kink shape is
shown in Fig. 3~b!. We notice that the kink contains very fe
particles and that its center is situated between two partic
This configuration will be henceforth denoted by a ‘‘nonce

FIG. 1. Spectrum of small-amplitude excitations around a k
in the generalized FK model as a function of the parameterr deter-
mining the shape of the potential~r 50 gives a sinusoidal potential!
for two values of the discreteness parameterd: ~a! d53.0 and~b!
d51.5.
es
l-
g

-

s.
-

tered’’ kink. Such a position of the kink corresponds to t
minimum energy for the standard FK model~sinusoidal po-
tential!. As we have chosen a fairly discrete case, the sp
trum presented in Fig. 3~a! includes the PN mode with the
frequencyvPN5v150.2482, which is a significant part o
vmin5(12r)/(11r)51.1053, indicating that this kink is
pinned by the lattice discreteness. Figure 3~c! shows the ei-
genvector associated with this localized mode. It has
shape of the derivative of the kink profile function, which
not surprising for a mode that will tend to the Goldsto
mode in the continuum limit~larged!. The spectrum of Fig.
3~a! shows also the presence of the second mode, whic
isolated below the continuum band. This is the kink’s inte
nal mode with the frequencyv251.0229. Its eigenvector is
shown in Fig. 3~d!. Figures 3~e! and 3~f! show the eigenvec-
tors of the mode at the bottom of the phonon band and
mode at the top of the band, respectively. As expected
modes that belong to the phonon spectrum, they are no
calized and extend over the whole atomic chain. These p
non modes are modified by the presence of the kink. Thi

k

FIG. 2. Spectrum of small-amplitude excitations around a k
in the generalized FK model as a function of the discreteness
rameterd for two values of the parameterr determining the shape
of the potential. Sinced is a measure of the kink’s width, high
discreteness corresponds to small values ofd. ~a! r 520.2 and~b!
r 510.2. In this latter case, the frequencies have been divided
vmax to show more clearly the existence of a mode above the to
the phonon band for smalld.
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FIG. 3. Example of the spectrum of a discrete kink in the generalized FK model. The results are shown forN5100 for clarity. Shown
are~a! eigenfrequencies of the small-amplitude excitations around the kink,~b! the shape of the static kink,~c! the eigenvector of the lowes
mode~this is the PN mode that would give the Goldstone mode in the continuum limit!, ~d! the eigenvector of the second mode~this is a
localized shape mode of the kink!, ~e! the eigenvector of the third mode~this mode is the lowest nonlocalized mode that belongs to
continuous spectrum band!, and~f! the eigenvector of the highest nonlocalized mode of the continuous spectrum band.
fo
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ous
200
200
known for the spectrum of the SG model and is also true
a discrete model.

Figures 1~a!, 1~b!, 2~a!, and 2~b! illustrate the genera
features of the kink’s linear spectra discussed above. Le
r

us

consider first the results presented in Fig. 1~a!. The phonon
band appears clearly, although it does not look continu
because the calculations have been performed with only
particles so that the phonon band can contain at most



e

s

0

s
e

a

s
ec
e
s

h
th
th

te
ia
o
a

ca

in

F
a
t

th

s

the
ode
long
he
-
-
hat
des
axi-
is-
on a
ode
he
sted
.
en
ink
ery
r-
on

fig-
is-

for
ible

re-
ten-
in.
le to
nd

tion
f
e
nd-

an-
in.
of

de

k’

56 6055KINK’S INTERNAL MODES IN THE FRENKEL- . . .
points. The bottom of the band is determined by the low
cutoff frequencyvmin5(12r)/(11r) and therefore it varies
with r . The top of the band is defined a
vmax5(vmin

2 14d2)1/2. For r 50, we do not see clearly the PN
mode in Fig. 1~a! because its frequency is almost equal to
for the valued53 that was used to generate this figure~for
d53 the properties of the FK model are already very clo
to those of the SG model!. The frequency of the PN mod
increases asr deviates from 0, especially forr .0 @4#. In the
low-frequency range, below the phonon band, Fig. 1~a!
shows the successive appearance of localized modesr
decreases toward the limit valuer 521 ~see Ref.@5#!. These
modes emerge from the phonon band because, as discu
above, they originate from the modification of phonon sp
trum. Looking at the region of larger , one can see also th
appearance of localized modesabove the phonon band, a
predicted by our discussions. Figure 4 presents one exam
of the eigenvector of such a HF localized mode. It shows t
the particles move out of phase as expected for a mode
evolved from a phonon mode situated at the edge of
phonon band.

Figure 1~b! presents similar results for a more discre
case,d51.5. The HF localized modes, which are a spec
feature of discrete models since they do not exist in the c
tinuum limit, are more visible and the figure shows that,
for the LF modes, a discrete kink can have several HF lo
ized modes. In addition, in Fig. 1~b! one notices that the PN
mode and the LF localized modes forr ,0 show a nonmono-
tonic variation with r @or d, in Fig. 2~a!#. This effect is
associated with a change of the stable position of the k
with respect to the lattice sites asr or d evolve. The kink’s
stable position can be either noncentered, as shown in
3~a!, or centered when the kink’s center is exactly at a p
ticle site. A transition between these two states is known
induce oscillations of the PN barrier@4#, but our results show
that this phenomenon affects the whole spectrum of
kink’s localized modes.

Another interesting feature that appears in Figs. 1~a! and
1~b! is that, for larger , the PN modepenetrates into the
continuum part of the spectrum. Therefore, such a kink doe

FIG. 4. Eigenvector of a kink’s high-frequency internal mo
for r 50.6 andd51.5. The frequency of this mode isv53.3620,
while the top of the phonon band is situated atvmax53.0732.
Neighboring particles move out of phase, contrary to the kin
low-frequency internal mode.
r

e
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not have a localized translational mode. An analysis of
phonon band in this case shows that the former PN m
appears as a maximum of the density of phonon states a
the prolongation of the curve showing the variation of t
PN frequency versusr for lower values of the shape param
eterr . This ‘‘track’’ of the PN mode in the continuum spec
trum is also visible on the eigenfunctions of the modes t
have a frequency close to it. The even modes, i.e., the mo
having the same symmetry as the PN mode, have the m
mum amplitude around the kink’s center, which is remin
cent of the shape of a localized PN mode superimposed
nonlocalized mode. The odd-symmetry mode, or the m
far from the track, does not exhibit such a maximum. T
absence of a localized translational mode can also be te
by driving the motion of the kink by a uniform external field
We did not succeed in driving the kink at low speed. Wh
the applied field exceeds a depinning threshold, the k
starts moving fast and its motion is accompanied by a v
strong growing tail of radiation. This effect can be unde
stood if one treats the track of the PN mode in the phon
band as anonlocalized translational mode.

Figures 2~a! and 2~b! show the deformation of the kink’s
spectrum for varying discreteness parameterd. Besides the
change of the phonon band, one sees clearly from these
ures the growth of the frequency of the PN mode when d
creteness increases. In addition, Fig. 2~b! shows how dis-
creteness induces the formation of HF localized modes
r .0. Discreteness has also more subtle effects, not vis
on the figures, which will be discussed below.

The qualitative discussion and numerical results have p
sented the main results of the role of discreteness and po
tial shape on the kink’s spectrum in a generalized FK cha
This sets the stage for some analytical studies that are ab
explain the origin of these results in some limiting cases a
additional numerical results to exhibit some fine points.

III. WEAK-COUPLING CASE

A. Analytical results

First, we discuss the simplest case of a weak interac
between particles, i.e.,g!1, when the kink’s core consists o
two particlesM52. In the lowest-order approximation, w
assume that all particles lie at the bottom of the correspo
ing wells of the substrate potential, while two particles~say,
with the numbersn50 andn51! are shifted from the bot-
tom in such a way that they create a kink describing a tr
sition between two neighboring ground states of the cha
Under this assumption, we look for a static configuration
the particles in the form

ul
kink'5

0 for l<21

2b for l 50

2as1b for l 51

2as for l>2

~8!

and, using the motion equation~3!, obtain an equation for the
shift b, g(as23b)5Vsub8 (b)'vmin

2 b, which has the solution

b'
asg

vmin
2 13g

.

s
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BecauseM52, we expect the existence of at least tw
internal kink modes. To find these modes and the co
sponding frequencies, we substitute the funct
ul(t)5ul

kink1dul(t), dul}eivt, into Eq.~3! and then linear-
ize it with respect to small oscillationsdul(t), thus obtaining
an equation for eigenfrequenciesv i , i 51,2. To find the fre-
quencies in an explicit form, we introduce the Green’s fun
tion ~see, e.g., Ref.@11#!

G~ l ,l 8;v!52 i lim
d→0

E
2`

1`

dt eivt2dutu^T̂ûl~ t !ûl 8~0!&,

whereT̂ is the time-ordering operator,ûl(t) is the displace-
ment operator in the Heisenberg representation, and^ &
means an average over the ground state. The matrix func
G(v)[G( l ,l 8;v) satisfies the matrix equatio
(v2I2B)G(v)5I , whereI is the unit matrix andB is the
matrix with the elements

B~ l ,l 8!5S ]2H

]ul]ul 8
D

ul5u
l
kink

. ~9!

In our case the matrixB can be presented in the form
B5B01dB, whereB0 is the ‘‘unperturbed’’ matrix describ-
ing linear oscillations of the chain without the kink,

B0~ l ,l 8!5d l ,l 8~vmin
2 12g!2~d l ,l 8111d l ,l 821!g,

while the perturbationdB is caused by the presence of a kin

dB~ l ,l 8!5d l ,l 8~d l ,01d l ,1!@Vsub9 ~b!2vmin
2 #

'
1

2
d l ,l 8~d l ,01d l ,1!Vsub8888~0!b2.

The Green’s functionG satisfies the Dyson-type equatio

G5G01G0dBG, ~10!

whereG0 is the Green’s function of the FK chain. It satisfie
the equation (v2I2B0)G0(v)5I and has the form
G0( l ,l 8;v)5Dl 2 l 8(z), where

Dl~z!5A~z!yu l u~z!, ~11!

A~z!52
i

2gA12z2
. ~12!

Here we have introduced two new variablesy andz accord-
ing to the relations

y~z!52z1 iA12z2, z5~v22vmid
2 !/2g, ~13!

wherevmid is the center of the phonon bandvmid
2 5vmin

2 12g.
For the frequencies within the phonon bandvmin<v<vmax,
we haveuzu<1. Outside the phonon band, whereuzu.1, the
square root in Eqs.~12! and ~13! should be calculated as

A12z252 i sgn~z!Az221. ~14!

Equation~10! can be easily solved; its solution gives th
expression for the functionG(0,0;v),
-
n

-

on

G~0,0;v!5H D0~z!1
dB~0,0!

g
D1~z!J Z21, ~15!

where

Z5122dB~0,0!D0~z!2
dB2~0,0!

g
D1~z!. ~16!

Analogously, we can determine other elements of the ma
G, all of them having the same denominatorZ.

Zeros of the equationZ50 determine the poles of th
Green’s function and therefore the frequencies of kink’s
ternal modes. Using Eqs.~11!–~14! and ~16!, the equation
Z50 can be rewritten as

~2g22g2!Az2215g sgn~z!~2g2gz!, ~17!

whereg[dB(0,0)' 1
2 Vsub8888(0)b2. The solution of Eq.~17!

is defined as

zPN52F11
g2

2g~g2g!G ~18!

and corresponds to a local mode providedzPN,21 ~or
g,g!. However, the direct substitution of the solution~18!
into Eq. ~17! shows that the latter is satisfied only provide
g,0. For the PR substrate potential~5! we have

Vsub8888~0!52vmin
2 1210r 1r 2

~11r !2 ~19!

and the conditiong,0 leads to the inequalityr .r 0 , where
r 05522A6'0.101. Furthermore, the conditionv2.0
leads to the additional inequality

g.g0[2
1

2
vmin

2 ~11A114g/vmin
2 ! ~20!

because atg5g0 the PN frequency vanishes.
Thus the kink’s LF internal mode exists provided both t

inequalitiesr ,r 0 and g.g0 are satisfied simultaneously
this mode corresponds to the PN mode with the frequen

vPN5H vmin
2 2

g2

g2gJ 1/2

. ~21!

The second solution of the equationZ50 can be found as

zHF511
g2

2g~g1g!
~22!

and corresponds to a local mode providedzPN.1 ~or
g.2g!. Again, a direct substitution of the solution~22! into
Eq. ~16! shows that the equation is satisfied only forg.0
~or r .r 0!. This HF mode corresponds to the antiphase
brations of two atoms of the kink’s core with the frequen

vHF5H vmax
2 1

g2

g1gJ 1/2

. ~23!
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Thus, in the weak-coupling limit, depending on the shape
the substrate potential, a discrete kink has either the
mode if r ,r 0 or the HF localized mode, ifr .r 0 .

B. Comparison with numerical results

The analytical results presented above confirm the
merical observations reported in Sec. II, i.e., that for largr
and sufficiently strong discreteness the PN mode may di
pear by penetrating into the phonon band. For a more
tailed verification of the validity of the analytical approach
the weak-coupling limit, we have determined numerica
the spectrum of a very discrete kink~i.e., d50.5, so that
g50.25! as a function ofr . In Fig. 5 the numerical result
are compared with the analytical calculations obtained ab
for the weak-coupling limit. The theoretical values ofvPN
and vHF have been found from Eqs.~21! and ~23!, respec-
tively. The values ofb, entering in the expression forg, have
been taken from the numerical static kink solution. In t
range 0<r<0.2, the analytical predictions of the domain
existence and frequencies of the PN and HF modes arevery
accurate. This is rather remarkable when one considers t
an accurate determination of the PN frequency of the
kink (r 50) was only obtained through elaborate analyti
methods@20#. The success of our analytical approach is e
plained by the fact that it treats the lattice discreteness int
sically. But one cannot expect the results to give a go
agreement when the kink’s core contains more than two
ticles. This is the case of strong coupling, but also la
values, of the parameterr , because the deformation of th
potential is associated, for positiver , with a broadening of
the kink’s core@4#. Figure 5 shows that for larger the ana-
lytical prediction ofvHF deviates from the numerical result
The second HF mode that appears at larger is the conse-
quence of an increase of the number of particles in the k
core, as discussed in Sec. II. The analytical result obtaine
the weak-coupling limit shifts gradually from the first H

FIG. 5. Spectrum of the FK chain containing a very discr
kink ~d50.5, corresponding tog50.25! as a function of the shap
parameterr . The crosses are the frequencies of the linear mo
around the kinks, determined numerically. The triangles and
monds indicate, respectively, the frequencies of the PN mode
the kink’s high-frequency internal mode, calculated analytically
the weak-coupling limit.
f
N

-

p-
e-

e

t
G
l
-
-

d
r-
e

k
in

mode to the second mode, which appears at largerr , because
the analytical calculation determines the mode that is
closest to the phonon band and therefore it is not appropr
to follow the frequency of the mode versusr when several
local modes exist. For negativer , the kink stays sharp, with
only two particles in the core, but its properties cannot
described accurately by the simple analytical approach
cause, in particular, the position of the kink’s center betwe
two particles may not be a stable position@4#.

C. Kink’s internal modes in the discrete SG chain

The effect of discreteness on the spectrum of the kin
internal modes is particularly interesting for the sinusoid
potential (r 50) because, in the continuum limit, this mod
is described by the integrable SG equation where a kink
only one localized mode, the Goldstone mode associa
with the kink’s translation. Figure 6~a! shows a magnifica-
tion of the spectrum around the bottom of the phonon ba
for the discreteness parameterd in the region 0.5<d<1.5.

s
-

nd

FIG. 6. Spectrum of a discrete SG kink.~a! Magnification of the
bottom of the phonon band for 0.5<d<1.5. The frequencies of the
linearized modes around the kink have been calculated for a c
of 400 particles, with fixed boundary conditions.~b! Shape of the
lowest mode of odd frequency~the mode with lowest frequency in
the spectrum is the even translational mode! for several values ofd
showing the shift from the nonlocalized to the localized state i
small range ofd values.
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One can see that for smalld (0.52,d,1.26) one mode
becomes shifted outside the phonon band and then it ret
to the phonon band for higher values ofd. This means that
the discrete SG kink can possess a localized internal mod
addition to the translational mode. Figure 6~b! shows the
shape of the corresponding eigenmode, which is the
mode corresponding to the lowest frequency. Ford50.5 or
1.3, it has the characteristic shape of a nonlocalized m
and corresponds approximately to one period of a sinuso
function, slightly distorted and with a large phase shift due
the presence of the kink. To understand this shape, one
keep in mind that the numerical results are obtained fo
finite chain with fixed boundary conditions. Therefore, w
cannot observe the true bottom of the band that would c
respond to a mode with an infinite wavelength. The calcu
tions have been performed with chains of 200 and 400 s
to check that the results are not perturbed by finite-size
fects. On the contrary, ford50.7 ord51, which correspond
to a mode below the bottom of the phonon band, the eig
function shows an exponential decay away from the cen
The decay is faster ford50.7 because in this case the mo
is farther away from the edge of the phonon band, as ca
seen in Fig. 6~a!. The curvature of the eigenfunction~down-
ward for a nonlocalized mode and upward for a localiz
mode! is a sensitive test of localization because it show
qualitative change from the localized and the nonlocaliz
mode. The existence of an extra localized mode in a nar
range of the discreteness parameterd is also observed for
other potential shapes close to the sinusoidal shape~e.g.,
r 520.01), but the case of the discrete SG kink is perh
the most interesting because the spectrum is known exa
in the continuum limit. It indicates that discreetness c
change the modes around a kinkqualitatively and create a
kink-shape mode, even for harmonic interactions and a
fectly sinusoidal potential.

IV. STRONG-COUPLING CASE

A. General analysis

In the opposite case, when the interatomic coupling
strong, i.e., forg@1, we can use the continuum approxim
tion. In this case the shape of the static kink is determin
according to Eq.~4!, by the equationd2u/dx25Vsub8 (u), or

du

dx
52

s

d
A2Vsub~u!, ~24!

where s561 is the kink’s topological charge. Equatio
~24! can be solved explicitly only for some special cases.
example, for the sinusoidal substrate potential the kink sh
is given by the expression~recall as52p!

uk
SG~x!54 tan21expH 2s

~x2X!

d J , ~25!

whereX is the coordinate of the kink’s center. Although fo
a general form of the substrate potential the shape of the
can be found only in an implicit form, we can obtain a
approximate analytical result useful for the subsequ
analysis of the kink’s internal modes. Indeed, in the region
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the kink’s core,ux2Xu,d, the kink’s shape can be pre
sented as the Taylor expansion

ukink~x!5u~X!1u8~X!~x2X!1
1

3!
u-~X!~x2X!31••• ,

~26!

where u(X)52sas/252ps and, according to Eq.~24!,
we have u8(X)52sA2Vsub(p)/d522s/d, u-(X)
5u8(X)Vsub9 (p)/d252sṽmin

2 /d3, and a similar expression
for higher-order derivatives. Here we have introduced
notation ṽmin

2 52Vsub9 (p) and have taken into account th
Vsub(p)5«s52. Now, using this expansion we can defin
the effective kink width deff as deff5d/A2Vsub9 (xm)
5d/ṽmin . As particular cases, for the SG model we ha
deff5d, while for the FK model with the PR potential~5! we
obtain

deff5
12r

11r
d5vmind, ~27!

i.e., deff.d for the caser ,0 anddeff,d for the caser .0.
Now, to find the kink’s internal modes, we should loo

for a solution of Eq.~3! in the form

ul~ t !5ukink~ las!1dule
ivt, ~28!

where the amplitudesdul of kink-shape oscillations are as
sumed to be small. Further analysis of the kink’s intern
modes is different for the LF and HF modes and should
carried out separately.

B. Kink’s low-frequency internal modes

For LF kink’s internal modes, the particles near the kink
core oscillate approximately in phase. Therefore, we can
a standard continuum limit approximation by lettin
dul→du(x) in Eq. ~28! and assuming thatdu(x) is a slowly
varying function of the particle number. Then, substituti
Eq. ~28! into Eq. ~3! and expandingVsub8 (u) into the Taylor
series with respect to a small deviationdu, we obtain the
stationary pseudo-Schro¨dinger equation~see, e.g., Ref.@21#!

F2
d2

dx2 1VSch~x!Gdu~x!5Edu~x!, ~29!

where

VSch~x!5d22$Vsub9 @ukink~x!#2Vsub9 ~0!%, ~30!

so thatVSch(x)→0 whenuxu→`, and

E5d22~v22vmin
2 !. ~31!

The potentialVSch(x) has a widthdeff , given by Eq.~27!,
and the depthV0 given by the expression

V05
1

d2 ~vmin
2 1ṽmin

2 !5
2

d2

11r 2

12r 2 . ~32!

The kink’s internal modes correspond to localized eige
states of Eq.~29! with negative eigenvalues. As is we
known, in the one-dimensional Schro¨dinger equation with a
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56 6059KINK’S INTERNAL MODES IN THE FRENKEL- . . .
potential vanishing at infinity, there exists at least one loc
ized eigenstate provided the area integral calculated for
potential is negative. This is indeed the case of the PR
tential at smallr and it is easy to check that the lowe
discrete eigenvalue of the eigenvalue problem~29! is equal
to E152(vmin /d)2 with the eigenfunction du1(x)
}d@ukink(x)#/dx. This solution corresponds to the Goldsto
mode and describes the continuous translation of the kin
the continuum model. However, as will be seen below,
rather larged we observe that the PN mode tends to dis
pear, merging with the phonon band for large values ofr .
Thus the existence of a PN mode for anyr , which one could
expect from the existence of a Goldstone mode, is true o
for d really large, i.e., for a nearly continuum limit.

Higher-order eigenvalues of the problem~29! can be
found only numerically. In order to investigate them quali
tively, we consider the modified Po¨schl-Teller~PT! potential

VPT~x!52
V0

cosh2~x/b!
, ~33!

which describes a potential well of the depthV0 and widthb
and allows exact solutions@22#. Namely, it is known that
there existNPT bound states for the potential well~33!,

whereNPT5 int(l) and l5 1
2 (11A114C), C5V0b2. The

eigenvalues of the discrete eigenstates~bound modes! are
found to beEi52V0(l2 i )2/C, wherei 51,2,,...,NPT. We
notice that the number of the bound states as well as t
eigenvalues are expressed through the only one dimens
less parameterC. A boxlike potential well leads to simila
results withl511(2/p)AC.

Now let us approximate the potentialVSch(x), defined by
Eq. ~30!, by the PT potential~33!. First we note that for the
SG model the potentialVSch(x) has exactly the form of the
PT potential~33! with the parametersC5CSG52 andl52.
Therefore, the SG model has only one bound state, the G
stone mode, while the energy of the second eigenmode
incides with the bottom of the continuum spectrumE250
~or v25vmin!.

For the PR potential~5!, we can defineb5deff and V0
from Eq. ~32!, so that the parameterC can be determined a

CPR52
~12r !~11r 2!

~11r !3 . ~34!

For r ,r 250 we haveCPR.CSG52 andl.2. Therefore,
the FK model with the PR potential~5! should have the
second bound state with the energy

E2'2S l22

vmind
D 2

. ~35!

Thus the FK model with the PR potential~5! always pos-
sesses the kink’s second internal mode forr ,0 and its fre-
quency can be found explicitly for small values ofr ,

v2'H vmin
2 2S l22

vmin
D 2J 1/2

'vmin2
32r 2

9vmin
. ~36!

Figure 7 shows the spectrum around a kink forr<0 and
d53 corresponding to rather broad kinks close to the c
l-
is
o-

in
r
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ir
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ld-
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tinuum limit. It indicates that the kinks do have at least o
localized mode in addition to the Goldstone mode, with va
ishing frequency that does not appear on the figure. Forr ,0
but very close to 0, the frequency of the localized mode
well approximated by Eq.~36!. For lower values ofr , for
which other localized modes appear as described below,
approximate expression, which gives the mode that is
closest to the phonon band, is unable to follow the variat
of the frequency of one specific mode versusr because it
tends to jump from one mode to another. With a furth
decrease ofr , r ,r 3'20.2, whenCPR.6 andl.3, a third
localized mode appears and so on. Figure 7 shows that
analytical predictions are well confirmed by exact numeri
calculations.

Now we take into account discreteness effects, assum
however, that they are small. As is known@7,17,18,23#, dis-
creteness leads to narrowing of the kink’s width, which a
proximately can be written in the form

d→ddiscr'dF12
1

12 S as

d D 2G . ~37!

As a result, the well of the Schro¨dinger potential~30! will be
narrowed, leading to a renormalization of the parameterC,

C→Cdiscr'CF12
1

12 S as

d D 2G2

. ~38!

Therefore, this effect leads to an increase of all eigenval
of Eq. ~29! and therefore to an increase of the eigenfrequ
cies corresponding to the internal modes. First, the Go
stone mode becomes the PN mode with a nonzero freque
v15vPN. Second, the kink’s internal mode can exist on
for r<r 2 , where r 2 is a nonzero negative value. Analo
gously, the critical values ofr at which the higher-order
modes show up become shifted to more negative values or .

FIG. 7. Spectrum of quasicontinuous kinks (d53) as a function
of the shape parameterr . The crosses are the frequencies of t
linear modes around the kinks, determined numerically. The
mode has almost the frequency 0 and is not visible on the fig
The triangles indicate the frequency of the kink’s internal mode t
is the closest to the lower limit of the phonon band, calcula
analytically in the strong-coupling limit.
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6060 56OLEG M. BRAUN, YURI S. KIVSHAR, AND MICHEL PEYRARD
Such a shift can be seen by comparing the results of Fig
at d53, and those of Fig. 1~b!, at d51.5.

C. Weakly perturbed SG kink

A general condition for the creation of the kink’s intern
modes can be derived only for the limit of the SG equat
perturbed by a small additional term. To show this, we c
sider the renormalized perturbed SG equation of the form

]2u

]t2 2
]2u

]x2 1sinu1«g~u!50, ~39!

where « is a small parameter and the functiong(u) is a
correction to the sinusoidal potential~which can also include
derivatives, etc.!. First, we look for the kink solutionuk(x)
of Eq. ~39! by means of the perturbative expansio
uk(x)5uk

(0)(x)1«u1(x)1••• , whereuk
(0)(x) is the kink so-

lution of the SG equation. The correctionu1 can be found in
an explicit form

u1~x!5
1

coshx E
0

x

dx8cosh2xE
0

x8 g~uk
~0!!

coshx9
dx9.

To analyze the small-amplitude excitations around
kink uk(x), we linearize Eq. ~39! by substituting
u(x,t)5uk(x)1w(x)eivt, so that the equation for the func
tion w takes the form

d2w

dx2 1
2

cosh2x
w2w1v2w1«d~x!w50, ~40!

where

d~x!5sin@uk
~0!~x!#u1~x!2g8@uk

~0!~x!#. ~41!

An analysis of the spectral problem~40! can be carried ou
by means of the singular perturbation theory and allows
to find an additional eigenvalue of the discrete spectrumv2 ,
which splits from the edge of the continuum spectrum ba
under the action of the external perturbation;« ~details of
this calculation will be discussed elsewhere@24#!. The result
is v2

25vmin
2 2«2k2, wherevmin is the lowest frequency of the

phonon band~which can be also shifted by the perturbatio!
and the parameterk is defined by the expression

k5
1

2 E
2`

1`

dx tanhx@d~x!2d~`!#tanhx.0, ~42!

whered(x) can be an operator, andd~`! is the limiting value
of the function~41!, which takes into account a shift of th
phonon band under the action of the perturbation«g(u).

Therefore, a small perturbation applied to the SG equa
can give rise to a kink’s internal mode providedk.0. For
the DSG model the application of Eq.~42! gives the result
already obtained above; see Eq.~36!.

Finally, it is interesting to note that the result~42! is simi-
lar to the well-known result of quantum mechanics tha
one-dimensional well always has at least one discrete ei
value. For the case of the kink’s internal mode, an additio
7,

n
-

e

e

d

n

a
n-
l

eigenvalue appears without a threshold fork.0 due to a
deformation of the reflectionless potential corresponding
the exact SG kink.

D. Kink’s high-frequency internal modes

Because for high-frequency modes the nearest parti
oscillate approximately with opposite phases, it is natura
look for a solution of the motion equation~3! in the form
~28! with dul5(21)ldv l and then to use the continuum a
proximation, assumingdv(x) to be a slowly varying func-
tion. In this way we again obtain the pseudo-Schro¨dinger
equation for the functiondv(x) analogously to Eq.~29!, but
with the effective potential of the form

VSch~x!5d22$2Vsub9 @ukink~x!#1Vsub9 ~0!% ~43!

and the corresponding eigenvalue~effective ‘‘energy’’!

E5d22~vmax
2 2v2!. ~44!

Note that now the functionVsub9 enters into the potentia
~43! with a negative sign, meaning that the bound states w
E,0 describe the HF localized modes with the frequenc
above the upper edge of the phonon spectrum b
v.vmax. As is shown in Fig. 8, for the PR potential~5! with
r .0 the function~43! always has two symmetric potentia
wells separated by a maximum. For smallr the wells are
very shallow and the potential may not have a bound st
According to the well-known result of quantum mechanic
this corresponds to the total area calculated for the poten
VSch(x) to be positive.

As r increases, the minima become deeper and a bo
state emerges from the top of the phonon band, as show
Fig. 9~a!. As it is the lowest state of the pseudo-Schro¨dinger
equation with an even potential, it must have an even sy
metrydv(x)5dv(2x). This is confirmed by numerical cal
culations of its eigenvector, as shown in Fig. 9~b!. As r in-
creases further, the wells become deeper and additi
bound state appears as an odd solution with a slightly hig
eigenvalue; see Fig. 9~c!. The mode with the highest fre
quencyvM.vmax is the kink’s internal mode, which de

FIG. 8. PotentialVSch(x) of the pseudo-Schro¨dinger equation
for the kink’s high-frequency internal modes in the strong-coupl
limit ( d55) at r 50.2 ~dotted line!, r 50.4 ~dashed line!, and
r 50.6 ~dash-dotted line!.
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FIG. 9. Kink’s high-frequency internal modes in the stron
coupling limit. ~a! Spectrum of the small-amplitude excitation
around the kink vs the potential parameterr for d55. Only the
region corresponding to the top of the phonon band is shown.~b!
Eigenvector of the mode with the highest frequency forr 50.6. It is
a localized mode with even symmetry.~c! Eigenvector of the mode
with a frequency immediately below. It is also a localized mo
but as its frequency is very close to the top of the phonon ban
shown in Fig. 9~a!, it is only weakly localized. This mode has a
odd symmetry.
scribes in-phase oscillations of the kink wings, while oth
more complicated modes correspond to lower frequencie

V. KINK’S NONLINEARITY-INDUCED
INTERNAL MODES

The analysis presented above is based on the linear
proximation when the amplitude of the kink’s internal osc
lations is assumed to be small. For larger amplitudes
oscillations become anharmonic and we should take into
count nonlinear effects.

First we recall that for the FK chain without a kink LF o
HF intrinsic nonlinear localized modes can exist~see, e.g.,
Ref. @2#!; the LF mode is an analog of a breather of the S
model, while the HF mode appears due to the discrete na
of the FK model. In addition, for the FK chain with an im
purity, nonlinear impurity modes can also exist@11#. In both
these cases the frequency of LF mode decreases, while
frequency of the HF mode increases, with a growth of
oscillation amplitude. It is natural to expect similar effec
for the kink’s internal modes, i.e., a nonlinearity-induc
shift of the mode frequencies. Such a shift of the frequen
due to a self-localization effect may have the following im
portant consequences. If in the linear approximation
kink’s internal mode is a virtual mode, i.e., its frequency is
the phonon band but close enough to one of the band ed
this mode can be transformed into a local mode with
frequency lying outside the phonon band for larger osci
tion amplitudes. Thus the number of internal kink modes w
increase with increasing amplitude of the kink’s oscillation

In general, the nonlinearity of a given shape mode is
pected to have two main consequences: the excitation
higher harmonics and a frequency shift as a function of
amplitude. The first effect, i.e., the excitation of higher-ord
harmonics, may have a dramatic effect if they fall within t
phonon band because they provide channels for radiative
cay. This is the case for the PN mode when its frequenc
above the valuevmin/2. Let us illustrate this by an exampl
for r 50.1 and d51 for which the PN mode has th
frequency vPN50.5386 while the phonon ban
vmin<v<Avmin

2 14d2, with vmin5(12r)/(11r), is situated
in the range 0.8182<v<2.1609. We simulate the dynamic
of a kink with an excited PN mode by solving the equatio
of motion ~3! with the initial condition

ul~ t50!5ul
eq1Av l

PN, ~45!

wherev l
PN are the displacements of the particles correspo

ing to a normalized linear PN mode and((v l
PN)251, ob-

tained numerically by diagonalizing the dynamical matrix
the small-amplitude oscillations as described in Sec. III. T
parameterA determines the amplitude of the excitation of t
mode. For smallA ~such asA50.001! the linearized descrip-
tion is valid and the numerical simulations confirm the s
bility of the mode. We follow the amplitude of the oscillatio
of the kink in the PN potential by recording the motion of th
particles that are on both sides of the center. As shown
Fig. 10~a!, the amplitude of the oscillations of these particl
around their equilibrium positions stays constant with tim
The measurement of the frequency of the oscillation deri
from a Fourier transform of the time evolution of the pos

,
as
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tion of one of these particles givesv50.538 5160.000 31,
in good agreement with the frequencyvPN50.538 58 ob-
tained by a numerical investigation of the spectrum of
small-amplitude oscillations around the kink. Although t
Fourier spectrum detects a tiny contribution of the seco
harmonic, it is so small that it does not play any measura
role in the system dynamics. On the contrary, forA50.1 the

FIG. 10. Numerical studies of the time evolution of a kink wi
an excited PN mode forr 50.1 andd51.0. The initial condition is
given by Eq.~45!. ~a! Time evolution of the displacement of a si
adjacent to the kink center. Only the difference between the e
librium position and the instantaneous position of the particle
shown. This figure combines the result of two simulations with t
initial conditions.~i! A50.001. The time evolution of the particl
displacements appears on the figure as a thick black line aro
v l50 because the period of the oscillation is very small at the s
of the figure (0<t<20 000) and the sinusoidal oscillation of th
displacement cannot be seen. The thickness of the line show
amplitude of the oscillation. To make this amplitude visible on t
plot, it is magnified by a factor of 10. One can notice that t
amplitude of the oscillation stays constant as time evolves.~ii !
A50.1. For this larger excitation the amplitude of the PN mo
decays with time. The figure shows only the extrema of the part
displacements. The positive and negative extrema of the oscilla
generate the two exponentially decaying curves on the plot.~b!
Snapshot of the velocities of the particles att510 000 for the initial
condition with A50.1. The emission of small-amplitude wave
away from the kink center appears clearly on the figure. A damp
term ~with the coefficientg50.1! is added to the equations for th
last ten sites at both ends of the chain to avoid a reflection of
waves at the fixed ends.
e

d
le

simulation shows a significant decay of the amplitude of
PN mode, as shown in Fig. 10~a!. The Fourier spectrum
gives a frequency ofv50.538 2060.000 31. This indicates
a slight decay of the frequency of the PN mode when
amplitude increases. Moreover, the Fourier spectrum in
cates a larger contribution of the second harmonic, which
within the phonon band and therefore induces the emiss
of small-amplitude propagating waves that carry ene
away from the kink@see Fig. 10~b!#. This emission explains
the decay of the amplitude of the PN mode.

As discussed above, we also expect thatnonlinearity can
localize a modethat would not be localized in the linea
lattice. We have checked numerically that this effect is
deed possible. An example is presented in Figs. 11~a!–11~c!.
We consider a kink in the discrete SG equation, i.e., atr 50
and d52. Figure 11~a! shows the shape of the first mod
above the PN mode, i.e., the mode that corresponds to
bottom of the phonon band. An initial condition for the sim
lation is generated by adding to the equilibrium displac
ments corresponding to the eigenvectorv l

PH of this mode,
with an amplitude factorA50.5,

ul~ t50!5ul
eq1Av l

PH. ~46!

Figure 11~b! shows that after an initial decay because t
initial condition is not an exact solution of the system, t
amplitude of the kink’s oscillations, observed through t
displacements of the particle adjacent to the center, settle
a value that oscillates but has a constant average. A snap
of the velocities of the particles@see Fig. 11~c!# shows that
the displacements around the kink have now thecharacter-
istic shape of a local mode. They decay exponentially awa
from the center. The measurement of the frequency of
large-amplitude shape mode created by this process g
v50.995 9860.000 78, i.e., a frequency that is below th
bottom of the phonon band,vmin51.0 for the discrete SG
chain. The slow oscillation of the amplitude of the sha
mode that appears in Fig. 11~a! is a beating between th
mode localized by nonlinearity and a mode at the bottom
the phonon band that persists in the system because
simulation started from an initial condition that does not c
respond exactly to the excited kink. The extra contributi
near the bottom of the phonon band has a vanishing gr
velocity and stays around the kink’s center, causing the b
ing. Therefore, increasing the amplitude of the lowest mo
of the phonon band has turned it to a local mode due so
to the nonlinearity-induced frequency shift.

A similar localization due to nonlinearity is possible for
high-frequency localized mode, although this effect is mo
difficult to observe numerically. Figures 12~a! and 12~b!
show an example ford52 andr 50.23. This value ofr was
chosen because, although the corresponding kink does
have a linearized, localized, HF mode, a small increaser
~up tor 50.25! is sufficient to create such a mode. Therefo
although we start from an approximate initial condition, w
can expect to create a localized mode forr 50.23 if we in-
crease the amplitude of excitation of the mode at the top
the phonon band enough to make it nonlinear. The result
Figs. 12~a! and 12~b! show that it is indeed possible. Th
mode shown in Fig. 12~a! was excited with an amplitude
factor A53. A plot of the velocities of the particles a
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FIG. 11. Nonlinearity-induced localization of a low-frequen
mode around a kink forr 50 and d52. ~a! Eigenvector of the
linearized mode that is situated above the PN mode. This m
corresponds to the bottom of the phonon band. Its frequenc
equal tov51.000 12~due to the finite size of the system the tru
bottom of the phonon band atv51.0 is not observed!. ~b! Time
evolution of the amplitude of the oscillations of the particles ad
cent to the kink center in a simulation with an initial conditio
including the equilibrium kink and the mode shown in~a! with an
amplitude A52.5. Only the extrema of the displacements a
shown.~c! Snapshot of the velocities of the particles att515 000
time units.
t515 000 time units@see Fig. 12~b!# shows that the mode
has acquired a shape with exponentially decaying tails, c
acteristic of a local mode. The variation of frequency
small, v54.048 99860.000 959, i.e., it is above the initia
value of 4.048 657 1 corresponding to the top of the phon
band.

VI. CONCLUSIONS

We have investigated the effect of discreteness on
existence and properties of a kink’s internal modes in
generalized FK models. We have shown that there exis
simple qualitative analogy between the kink’s internal mod
and impurity modes and we have employed this analogy
discuss the physics and origin of these localized modes
kinks in discrete lattices. We have used two different me
ods to describe the kink’s internal modes analytically in t
limiting cases of weak~strongly discrete! and strong~con-
tinuum approximation! interactions between the particles
the lattice. We have revealed and described two impor
physical effects associated with the kink’s internal mod
high-frequency localized kink oscillations above the phon

e
is

-

FIG. 12. Nonlinearity-induced localization of a high-frequen
mode around a kink forr 50.23 andd52. ~a! Eigenvector of the
linearized mode around the kink that corresponds to the top of
phonon band. Its frequency is equal tov54.048 657 1.~b! Snap-
shot of the velocities of the particles att525 000 time units.
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band of a discrete lattice and nonlinear kink internal mo
that can appear due to a nonlinearity-induced frequency s
from the upper and lower edges of the phonon spect
band. We believe the main features of the kink’s inter
modes analyzed here for some particular examples of
generalized FK model will be found also in other discre
physical systems.
s.
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