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We propose an approach which allows us to find the structure of elementary topologically stable excitations
~kinks! for a complex ground state~GS! of an atomic chain subjected to the two-dimensional external potential
periodic along the chain and bounded in the transverse direction. The approach is based on the consideration
of the complex GS consisting of subchains, each being characterized by the trivial structure, so that the kink of
the whole system may be considered constructed of a set of topological excitations~subkinks! of the subchains.

A number of physical systems have a degenerated ground
state ~GS!. Such systems admit topological excitations,
which ‘‘link’’ different ground states. As examples we may
recall dislocations in solids,1,2 domain walls in magnetic
materials,3 vortices in long Josephson junctions,4 etc. These
solutions~the so-called kinks! describe transitions between
equivalent vacuum states.

Investigation of properties of these topological excitations
is very important, because they contribute to static properties
of solids~such as the spectrum of elementary excitations!, as
well as to dynamic ones~e.g., charge, mass, and energy
transport in solids!. When the degeneration of GS is
‘‘simple,’’ for example, when it is doubly degenerated as in
thef4 model, or when it is generated by the Abelian group
of translations as in the sine-Gordon~SG! model, the struc-
ture of topological excitations is simple too. But when GS
has a complex structure, for example, when an elementary
cell of the crystalline GS is non-Bravais~i.e., consists of
more than one atom!, the determination of the structure of
topological excitations is a nontrivial problem. First, there
may exist excitations of different kinds. Second, a question
arises of how to find elementary excitations, which then may
be used for the construction of any other topological excita-
tion in the system under investigation.

The goal of the present work is to propose a method
which allows us to find these elementary excitations. As a
concrete example, we use the Frenkel-Kontorova~FK!
model with a transverse degree of freedom~‘‘zigzag-FK
model’’! proposed in Ref. 5. The model describes a chain of
interacting atoms subjected to a two-dimensional potential
which is periodic along the chain and bounded~e.g., para-
bolic! in the transverse direction. The Hamiltonian of the
system has the form
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describes the potential energy of interaction of thekth atom,
with N* nearest neighboring atoms (N*.N), V(r ) is the
potential energy of the pairwise atomic interaction@we took
the particular case of Coulomb repulsionV(r )5V0 /r #, v is
the frequency of a single atom transverse vibration, and
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determines the distance between the atoms. We consider the
‘‘fixed density’’ FK model, i.e., we place the atomic chain of
lengthL consisting ofN particles into a substrate potential,
which hasM minima on the distanceL and we assume the
periodic boundary conditions. Starting with the correspond-
ing initial configuration, we solve directly the Newton equa-
tions of motion applying a method suggested in Ref. 6.

The model~1,2! describes, for example, the adsorption of
atoms on furrowed or stepped crystal surfaces~see, e.g.,
Refs. 7 and 8!. An interesting application of the model with
nonconvex transverse potential is related to the reconstruc-
tion of surface growth in crystals.9

When the frequencyvy of transverse vibrations of an iso-
lated atom tends to infinity, the zigzag-FK model reduces to
the standard one-dimensional FK model,1,2 where all atoms
are aligned to a line. When the repulsion between atoms in
the chain increases, the GS of the zigzag-FK model under-
goes a sequence of bifurcations, starting with the zigzag
ground state~ZGS!.5,10 Further increasing of the repulsion
leads to the bifurcation to the ‘‘rhomboidal’’ GS, then to the
‘‘double zigzag’’ GS, and so on.11,12

Topological excitations of the FK-type models are known
as kinks, or topological solitons. A simple situation emerges
in the standard FK model, where only two types of kinks

PHYSICAL REVIEW B 15 MAY 1996-IIVOLUME 53, NUMBER 20

530163-1829/96/53~20!/13877~6!/$10.00 13 877 © 1996 The American Physical Society



exist, namely, the kink, which describes the minimally pos-
sible topologically stable compression of the chain, and the
antikink, which describes the analogous expansion of the
atomic chain. The simplest~and most widely studied! case
corresponds to the trivial ground state of the standard FK
model, when the dimensionless atomic concentrationu ~de-
fined as the ratio of the number of atomsN to the number of
minima of the external potentialM in the limit when both
N andM tend to infinity! is equal to one, so that the lattice is
Bravais and each minimum of the external potential is occu-
pied by one atom in the GS. In this case, the kink~antikink!
configuration describes an extra atom~vacancy! inserted into
the chain, when all other atoms are relaxed in order to adjust
to the created local perturbation. However, whenu5r /p
(r and p being integers! with rÞp, the situation becomes
nontrivial even for the standard FK model. In particular, now
the kink is characterized by the fractional atomic number
p21, so that one additional atom inserted into the chain pro-
ducesp kinks.

Let us consider a complex GS of the FK model with
u5r :p, so that the period of the GS structure isp ~we take
the period of the external potential as the unit of length!, and
each elementary cell of the GS consists ofr atoms~we use
here the designationu5r :p instead ofu5r /p, in order to
emphasize thatr andp for nontrivial GS may have a com-
mon divisor as, for example, in the ZGS of the FK model
with the transverse degree of freedom, wherer5p52). The
idea of the approach developed below is to treat a complex
u5r :p GS of the chain as consisting ofr subsystems~sub-
chains!, each being characterized by the trivial stucture. In a
single subchain, we may create kinks~subkinks! if we sim-
ply shift the right-hand side of the subchain for an integer
number of periods of the substrate potential. In this way, we
may consider any topological excitation of the whole system
as constructed of subkinks. However, subchains strongly in-
teract with each other. Consequently, many combinations of
subkinks are forbidden, because the right-hand side of the
chain must correspond to a true GS configuration. Thus, the
problem under investigation reduces us to looking for al-
lowed combinations of subkinks, and then to distinguishing
those combinations that may be considered as elementary
ones, so that any other combination can be constructed from
the elementary ones.

The whole symmetry groupS of the FK model, with
u5r :p GS, may be split to two subgroups,S 5F ^G . The
first subgroupF is an Abelian group,F [$Tn%, where
n50,61, . . . . It is generated by the operatorT, which de-
scribes translation of the chain as a whole for the distance
p ~i.e., for one period of the GS structure!. The second sub-
group G is a finite ~‘‘point’’ ! group, which describes the
local symmetry of the complex elementary cell. For the
trivial GS, where all atoms are aligned to a line as in the
standard FK model,G is a cyclic group consisting ofp ele-
ments. G is generated by the operatorG, G[$Gl%,
l50,1, . . . ,p21, andGp5G051, whereG corresponds to
translation of the chain as a whole for the unit distance~i.e.,
for one period of the substrate potential!. On the other hand,
when GS is nontrivial, the point groupG includes addition-
ally elementJ (J251), which describes the ‘‘inversion’’ of
the GS. For example, in the zigzag-FK model above the first
bifurcation point, when atoms in the GS are shifted from the

line in the transverse direction, the action ofJ on the GS
produces the ‘‘mirror image’’ of the state, with respect to the
chain’s line. Thus, for the case whenr andp are not relative
prime andr is even, the GS is additionally doubly degener-
ated.

In general, in order to create a topological excitation in
the chain, we have to choose an element of the whole sym-
metry group and to act by this operator on the GS obtaining
a new GS configuration, and then to look for the kink con-
figuration, which links the old and new GS’s, i.e., to find the
minimum-energy configuration with the boundary conditions
at infinities when the left-hand side of the chain is kept in the
old GS, while the right-hand side is in the new GS~for the
sake of concreteness, we assume that the atoms repel each
other!.

Although the total number of topological excitations is
infinite ~but countable!, all of them can be constructed from
few kinds of ‘‘elementary kinks.’’ To find the structure of
elementary kinks, let us consider the whole system as that
constructed ofr subchains. Each subchain, being considered
independently from other subchains, has the trivial GS con-
figuration, i.e., an elementary cell of a subchain always con-
tains one atom only. Analogously as it was done above, we
can define translation operatorsGi and Ti , i51,2, . . . ,r ,
acting on thei th subchain only. It is evident that any element
S(a) of the whole symmetry group,S(a)PS , may be pre-
sented as a product of elements of the subchain’s subgroups
G i andF i ,
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wheregi
(a) and t i

(a) are integers. But the opposite statement
is not true, the set of all products) iGi

g
^Ti

t exceeds the set
S . Indeed, because the subchains are strongly interacting, a
relative arrangement of the subchains in the GS must not be
violated, and this leads to a constraint on the admitted values
of the integersgi

(a) in Eq. ~4!. Namely, the following condi-
tion must be fulfilled:

gi
~a!modp5g~a!, i51, . . . ,r ~5!

for all subchains simultaneously. If we namegi
(a)mod p as

the ‘‘color’’ of the i th subchain, the condition~5! means that,
in the GS, all subchains must have the same colorg(a).

In the way described above, we may constuct any topo-
logical excitation of the system. Recalling that the operator
Gi applied to the right-hand side of thei th subchain creates
a subkink in this subchain~and, analogously, the inverse
operatorGi

21 creates a subantikink!, we see that any topo-
logical excitation may be treated as consisting of a corre-
sponding set of subchain’s subkinks. Because the GS of an
isolated subchain is trivial and is characterized by the dimen-
sionless concentrationu i51/p, a single subkink~suban-
tikink! has a topological chargep21 ~or2p21). Therefore, a
topological excitation of the whole system can be character-
ized by a topogical chargeQ(a)5qtot

(a)/p, where

qtot
~a!5(

i51

r

~gi
~a!1pti
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Thus, the only question which remains still open is how to
classify topological excitations, i.e., to select those excita-
tions that may be considered as the simplest, or elementary
ones. Taking into account that topological charges~6! are
additive, so that the topological charge of a complex excita-
tion always is a sum of topological charges of elementary
excitations, it is not difficult to guess that elementary excita-
tions should correspond to those with minimum topological
charges, such asqtot50 and 1 or 2.

From Eqs.~5! and ~6!, it follows that qtot may be pre-
sented as

qtot5rg1ph, ~7!

wherer andp are given integers determined by the concen-
tration u, the colorg must be within the interval

1<g,p, ~8!

andh is an integer. So, the problem reduces to looking for
such integersg @from interval ~8!# and h, which minimize
the absolute value ofqtot defined by Eq.~6! for given
u5r :p. Let us proceed further in two steps.

Step 1. Suppose that the minimumuqtotu is equal to one. In
this case, Eq.~7! takes the form~we change hereh→2h and
put qtot521 for the sake of convenience!

ph511rg. ~9!

Suppose also thatr andp are such that the integer equation

ph5rg ~10!

has no solutions, so thatr andp are relatively simple.
Let us putp points on a circumference and numerate them

from 0 top21, as shown in Fig. 1. Then, let us begin from
the point number 1,a051, and make an anticlockwise rota-
tion moving by ‘‘large’’ steps, each ofr unit steps. After the
first turn by several ‘‘large’’ steps, we come to a pointa18 ,
which is the closest to the initial pointa0 . Calculate the
integer

s15~p2a0!modr . ~11!

If s150, thena1850 ~recall that the points with numbersp
and 0 coincide!, and Eq.~9! has a solution withh51, while
the colorg is determined by the number of ‘‘large’’ steps
during the first turn.

Otherwise,a185p2s1 , and the next point in the anti-
clockwise direction is a15r2s1Þa0 . To prove that
a1Þa0 , let us suppose thata15a0 . Then we getr2s151,
(p21)modr5r21, p215 j r1r21 ( j is an integer!, and
finally p5( j11)r , which contradicts the assumption that
Eq. ~10! has no solutions.

Then, starting from the pointa1 , after the second rotation,
we come to a pointa28 . We calculate

s25~p2a1!modr . ~12!

If s250, we havea2850, so thath52 in Eq. ~9!. Otherwise,
the next point isa25r2s2 . Again, in the same way, we can
prove thata2Þa1 and alsoa2Þa0 . Thus, after each turn, we
come to a new point in the circumference. But because the
number of these points is finite (5p), after a finite number
of steps, we finally come to the point with the number 0, and
the number of turns just gives the value ofh in Eq. ~9!. So,
we have proved that Eq.~9! always has a solution provided
Eq. ~10! has no solutions, and have shown how to find it.

Step 2. Now let us suppose that Eq.~10! has a solution. It
is easy to see that it is true, if and only ifp and r have a
common divisorj 0.1, i.e., if

p5p0 j 0 and r5r 0 j 0 . ~13!

Indeed, represent the productP5ph5rg as

~14!

wherei 1 , . . . ,i n are simple integers. From~14!, we see that
if r and p have no common divisors, it should beg5Rp
with R.1, but this is forbidden by the restriction~8!.

Let j 0 correspond to the greatest common divisor. If we
now put g5p0 and h52r 0 in Eq. ~7!, we obtainqtot50,
i.e., we have found one kind of kink with zero total topologi-
cal charge. Puttingqtot50 in Eq.~6! and taking into account
Eq. ~5!, one can see that the elementary excitations should
correspond to the integersg5p/2 andh5r /2.

Besides, in the present case there exist also solutions with
a nonzero topological charge equal toQ5 j 0 /p. Their struc-
ture can be found from the solution of the equation

p0h511r 0g, ~15!

similarly as it was done above in step 1, because now the
integer equationp0h5r 0g has no solutions.

To summarize, when the point groupG does not include
the inversion operatorJ, so that r and p are relatively
simple,u5r :p GS admits the existence of a single kind of
elementary topological excitation, the SG-type kink with to-

FIG. 1. Construction of elementary topological excitations.
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pological chargeQ51/p. The kink structure, in this case,
may be found from the solution of the integer equation~9!.

Otherwise, whenr andp are not relative prime and have
the greatest common divisorj 0 , u5r :p, GS supports the
existence of two kinds of kinks. The first kind is the
f4-type kink, it has the topological chargeQ50, and its
structure is characterized by the colorg5p/2. The second
kind of kink is the SG-type kink with topological charge
Q5 j 0 /p, and its structure is determined by Eq.~15!. These

two kinds of kinks were named in Ref. 10 as ‘‘massive’’
kink and ‘‘nonmassive’’ kink, respectively, because mass
~charge! transport along the chain may be carried out only by
kinks with nonzero topological charge, i.e., by ‘‘massive’’
kinks. It is important to note that, in the model under inves-
tigation, there is no constraint on a sequence of kinks of
different kinds.

If we denote byk ( k̄) the subkink~subantikink! in a sub-
chain, then an elementary topological excitationK of the
whole system may be represented as a set ofr elements, such
asK5$g1k,g2k, . . . ,grk%. For example, Fig. 2 shows the
structure of elementary kinks for the trivialu53:5 GS. Be-
cause 3 and 5 are relatively simple, in this case, we have only
one kind of kink, the SG-type kink with the topological
chargeQ51/5. Indeed, Eq.~9! has the solution forg52 and
h51, so that the kink structure is characterized byg152,
g252, andg3523, orK5$2k,2k,3k̄%. It is interesting that
this structure essentially differs from what might be expected
from a naive approach. Indeed, if we, following the kink
definition as the minimally possible compression of the
chain, simply compress the chain by shifting its right-hand
side for one period of the substrate potential to the left, we
create a topological excitation with topological charge
Q53/5 and structure$k,k,k%, which then has to be split into
three elementary excitations, $k,k,k%→$2k,2k,3k̄%
1$2k,3k̄,2k%1$3k̄,2k,2k%53K.

To illustrate the conclusions made above, we have per-

FIG. 2. Structure of trivialu53:5 configurations (v52.0,
V0540). ~a! Ground state,~b! kink, and~c! antikink structures. The
vertical dashed lines show the positions of the minima of the sub-
strate potentialXi52p i , i51, . . . ,M .

FIG. 3. ‘‘Rhomboidal’’ u53:4 configurations (v52.0,
V054000). ~a! Ground state,~b! kink configuration (r53, p54,
g51, h51, Q51/4). The vertical dashed lines show the positions
of the minima of the substrate potentialXi52p i , i51, . . . ,M .
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formed numerical simulations for a Frenkel-Kontorova
model with a transverse degree of freedom~1,2!. Kinks for
the ZGS were studied in detail in Ref. 10. In this case, the

GS state is additionally doubly degenerated,j 052, and we
have two kinds of kinks, the ‘‘massive’’ kink5$k,k% with
Q52/p and the ‘‘nonmassive’’ kink5$k,k̄% with Q50.

A more complicated case of ‘‘rhomboidal’’u53:4 GS,
which arises after the second bifurcation in the zigzag-FK
model,12 is shown in Fig. 3. The solution of Eq.~9! is
h5g51 in this case, so that the kink structure may be rep-
resented asK5$k̄,3k,k̄%.

Finally, Fig. 4 demonstrates configurations for the ‘‘mas-
sive’’ and ‘‘nonmassive’’ kinks for the ‘‘double-zigzag’’
u54:4 GS, where the point groupG includes the inversion
operatorJ. In this case, we havej 054 andg52, so that
the ‘‘massive’’ kink has topological chargeQ51 and is
characterized by the structure5$k,k,k,k%, while the ‘‘non-
massive’’ kink has the configuration5$2k,2k̄,2k,2k̄%.

In the model under investigation, the atoms may be
shifted not only along a given subchain, but also they may be
transferred from one subchain to another one. However, the
subkinks which form the kink are to be spatially bounded in
a localized region, because a displacement of a single sub-
kink from the region of the kink localization leads to an
increase of the system energy linearly with this displace-
ment. Thus, in this sense the subkinks are like quarks of the
field theory, while the kink, an elementary particle con-
structed from the quarks.

Note that all topological excitations with the same total
topological charge are identical from the topological point of
view. For example, the ‘‘massive’’ kink shown in Fig. 4~b!
has the structureK5$k,k,k,k%. But the configurations
K5$k,5k,3k̄,k% andK5$3k̄,5k,3k̄,5k% describe the same
topological excitation as well. Besides, any subchain may
contain additionally any number ofk-k̄ pairs. All these con-
figurations are different from the physical viewpoint, in par-
ticular, they may be characterized by different potential en-
ergies. One of them corresponds to a minimum of the system
potential energy, others may correspond to local minima or
saddle configurations. Because the configurations with the
same topological charge may be transformed to each other in
a continuous way, the strategy developed in the present work
helps to look for possible trajectories of motion of a kink
along the chain. Besides, owing to the intrinsic structure of
kinks for a complex GS, the kinks have to have intrinsic
~‘‘shape’’! modes, which describe oscillations of the sub-
kinks with respect to each other.
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