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Zigzag Kkinks in the Frenkel-Kontorova model with a transversal degree of freedom
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We consider a generalized (two-dimensional anisotropic) Frenkel-Kontorova model that takes into ac-
count a transversal degree of freedom. The model describes a chain of atoms moving in a two-
dimensional substrate potential that is periodic along the chain and parabolic in the transversal direc-
tion. When the atoms interact by repulsive forces (this is valid, e.g., for adsorbed atoms), the ground
state of the commensurate chain becomes zigzag above a certain threshold value. We study the zigzag
kinks in such a chain and demonstrate that the transversal degree of freedom breaks the symmetry be-
tween the kink and antikink. The applicability of the model to describe surface diffusion in two-
dimensional anisotropic layers adsorbed on crystal surfaces is briefly discussed.

The study of nonlinear dynamics in spin- and charge-
density-wave systems, atomic monolayers adsorbed on
stepped or furrowed crystal surfaces, and magnetic struc-
tures has recently been of considerable interest both for
experimentalists as well as for theoreticians. Among the
variety of phenomenological models proposed to describe
such systems, the simple model of a chain of atoms in-
teracting via next-neighbor harmonic forces and placed
in a periodic substrate potential, due originally to Frenkel
and Kontorova' (FK) and developed further by Frank
and van der Merwe?, has proved to be the most suitable
for the theoretical description of different nonlinear phe-
nomena: commensurate-incommensurate phase transi-
tions,> charge-density-wave propagation,* magnetic’® and
ferroelectric’® domain walls, dislocation dynamics,? and
kink structures in adsorbed monolayers.’ The model has
been extended in a number of studies to nonzero tempera-
tures,® anharmonic or long-range interactions between
atoms (see, e.g., Ref. 8), including substrates with a more
complicated structure, etc. Most of these studies have,
however, been restricted to one spatial dimension. How-
ever, the physical systems mentioned above are not, in
fact, one dimensional, and investigations of nonlinear
phenomena in two-dimensional versions of those models
are very important because the two-dimensional models
have a lot of features in comparison with their one-
dimensional limits and, for example, they allow new types
of defects that are only possible in two dimensions (see,
e.g., Refs. 9 and 10).

In particular, the study of the mobility of atoms in
two-dimensional atomic layers adsorbed on crystal sur-
faces has a special interest in applied physics.”!! But the
analysis of an isotropic two-dimensional FK model is a
rather difficult problem and results may be obtained only
by numerical simulations.>!® However, in a number of
cases, two-dimensional structures may be considered as
anisotropic ones. For example, this is the case of adsorp-
tion of atoms on “furrowed” crystal surfaces, such as the
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(112) face of bee crystals, or the (110) face of fcc crystals,
when the surface potential along the furrows is much
lower than that in the transversal direction. A similar
situation takes place for adsorption on stepped (vicinal)
surfaces when substrate atoms on the step have addition-
al unsaturated chemical bonds and, therefore, the atoms
are predominantly adsorbed on the step, where their cou-
pling with the substrate is stronger. In such cases, it is
natural to assume that the two-dimensional system is an
anisotropic one, so that it consists of weakly interacting
linear chains. However, these chains cannot be one di-
mensional because, as is well known (see, e.g., Refs. 7 and
12, and references therein), adsorbed atoms have a charge
and they interact by effective repulsive forces. It means
that, above a certain threshold, the linear chain may be
unstable, so that one has to take into account the
transversal degree of freedom.

It is our purpose in this paper to consider the general-
ized (anisotropic) FK model which takes account of
atomic displacements in the transversal direction. We
show that, above a certain threshold value, the commens-
urate structure of the atomic chain with repulsive in-
teractions has a zigzag ground state, and it stipulates a
number of features in the kink propagation along the
chain. In particular, the transversal degree of freedom
leads to an effective anharmonicity in the atomic interac-
tions and it breaks the symmetry between kinks and an-
tikinks which is valid for the one-dimensional FK model
with harmonic interparticle interactions. We discuss the
applicability of the model to describe surface diffusion in
quasi-one-dimensional layers adsorbed on crystal sur-
faces, and describe some effects which may be explained
by the creation of zigzag kinks in adsorbed atomic
chains.

Considering the generalized FK model with two de-
grees of freedom, we assume that the substrate potential
is periodic along the chain and parabolic in the transver-
sal direction, so that the Hamiltonian of the chain has the
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form (after appropriate scaling)

H=3[1x} + 1y} +(1—cosx; ) +1ewy?
k

TVire )+ Volrge o)1, (1)

where x; and y, are the coordinates of the kth atom,

P = —x, P+ —p, 2172,
and o is the frequency of the transversal oscillations of an
isolated atom (we assume that ©>1). The potentials V;
and ¥V, describe interactions of nearest and next-nearest
neighbors in the chain.

The model (1) may be considered as an anisotropic ver-
sion of the two-dimensional FK model studied numerical-
ly by Lomdahl and Srolovitz, > '° the transversal substrate
potential 1w?p}? being an expansion of a more general po-
tential ®*(1—cosy, ) for small y,. The main difference
between our model and the mentioned one is the interac-
tion interparticle potentials ¥'; and V,: the potential V',
is repulsive and, when a zigzag structure arises, the po-
tential V', also has to be taken into account.

Straightforward analysis demonstrates that the ground
state of the commensurate atomic structure, when each
minimum of the periodic substrate potential is occupied
by an atom (at a fixed atomic concentration), is not
changed in the case of attractions between atoms [Fig.
1(a)], i.e., the ground state is defined by the coordinates
x, =ka;=2wk, y, =0, where a; (we assume a,=2m) is
the period of the substrate potential. However, in the
case of a repulsion, i.e., for V(a,) <0, the ground state
becomes zigzag [see Fig. 1(b)] provided

%w2+lV’l(as)<0, 2)
a

s

and then the atomic coordinates are the following:
xe=ka,, yp=(—1% , 3)

where the parameter b is determined by the equation
@*ro+4V'(ry)=0, ro=(a2+4b%?.

As a result, the chain may be considered as two subchains

with opposite positions of nearest atoms [see Fig. 1 (b)].

The further increase of the repulsion between nearest
neighbors leads to an instability of the ground state (3)

provided
2

2b (0®>—1)<0 4)

s

1+4V7 (rg)—

with respect to shifts of subchains in the opposite direc-
tions along the chain. Moreover, unlike in the one-
dimensional chain, in the generalized FK model (1) with
repulsive interactions between the finite number of in-
teracting neighbors, the physically reasonable ground
state corresponds to a local minimum of the potential en-
ergy because rearrangements of atoms in the chain will
lead to a decrease of the energy. Besides, the repulsion of
next-nearest, next-next-nearest, etc., neighbors may lead
to appearance of a set of more complicated ground states:
zigzag, sub zigzag, etc. As a result, to describe all of
these states, the rigorous model should take into account
interactions between all atoms in the chain. Here we will
consider, for simplicity, the situation when only two
different ground states may exist [see Figs. 1(a) and 1(b)].

Let us now investigate a topologically stable excitation
of the chain in the form of a kink (antikink) that corre-
sponds to the minimal possible compression (expansion)
of the commensurate atomic structure. For the one-
dimensional FK chain, the kink and antikink structures
are shown in Figs. 1(c) and 1(e), respectively. It is impor-
tant to note that, for the one-dimensional FK model with
harmonic potentials ¥;(r) and V,(r), the parameters of a
kink and antikink are the same. However, in the two-
dimensional FK model with the zigzag ground state, the
parameters of a kink and antikink [see Figs. 1(d) and 1(f)]
will be drastically changed and, as it will be seen from the
subsequent analysis, they are different even for harmonic
interactions between atoms in the chain.

To calculate the kink parameters in the generalized FK
model (1), let us introduce the new variables u; and v,
defined as

xp=ka,+u,, y,=(—DXb+uv,) . (5

When the displacements u#; and v, slowly depend on k,
i, when |up i —uy|l<<a,, |vp4,—vl<<a,, and
lvg| <<a,, we can expand the potentials V,(r) and V,(r)
in the Taylor series up to the third-order terms in the

differences rz—r(z) and r2—r%, respectively, where

ro=(a2+4b%)!/? and r, =2a,. Taking into account those
expansions, we may reduce the Hamiltonian (1) to the fol-
lowing form (we take here a, =2m):

FIG. 1. Comparison of the ground states [(a) and (b)], kinks [(c) and (d)], and antikinks [(e) and (f)] for the one-dimensional [(a), (c),
and (e)] and generalized [(b), (d), and (f)] Frenkel-Kontorova models. Dashed lines show minima of the substrate periodic potential.
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H=3[1ag+ 107 +(1—cosup )+ L A (uy 1 —up P+1g (up ,— 1 )2+ Lo +4g)(2b /ry ) v}
k

5 Ay 41—V P2 A0, (0 11— 0 ) — F0T (0 10 P+ As(uy o —uy )P

+ Ay 11— u (g o)+ Ag (g g —ugy(0g 4+ )

+(1/327) 0 +4g N 1y —ug N0g 10— )?]

where we have introduced the notations

g=Vi(ry), g,=Vy(r)), o?=—4V,y(r))/r, A,=gQ2m/ry)*— 10X 2b /ry)*,

A,=g(2b /1o — 10X (27 /r)?, Ay =8+(2b /1o 2m /ro N +4g)+ 127 /ro PV (ry)
0

A4:%V1211(r1) , AS=._1..(27T/r0)2(2b/r0)(a)2+4g)+%

8r0

A6=§%—(2b/r0)[1-—3(2‘n’/r0 P +4g)+[b2m) /r3 1V (1) ,

0

A, =(7/4r3)[1—3(2b /ry)* N +4g)+[7(2b)2 P31V (ry) .

In the continuum limit, the Hamiltonian (7) yields the following equations of motion:

U, — (2 A, +48 ) U, +sinu —(472b /r} ) w?+4g v,

U +(2b /7)) 0? +4g ) +24 A5v2+(47%b /r3Nw?+4g )u, + 87 Agu?+ 167 A vu, =0 .

In the lowest approximation from Eq. (8b) it follows that
v(x,t)~ — (7 /b)u,(x,t), 9)

the relation being valid for b ~1. Then, substituting Eq.
(9) into Eq. (8a), we obtain the perturbed sine-Gordon
(SG) equation
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+ Ho?+4g N 4mb /r3)uy 4y —w N g o F o)+ gy y—ug P+ As(vg 440, )
(6)
3
25 ey, 0
ro
—6(2m) (A3 +8 A )u u,, — 16w Aov, —16m* Ag(u, v +u,v,)=0, (8a)
(8b)
[
1 de,(D)
(Ep )eﬁ-zép(D)‘f‘TO"lTaDW N (15)
where (see, e.g., Ref. 8, and references therein)
(mD)? 2
~2—— 2 (142 .
_ , P =3 an(wD 72y 2P (16
u, +sinu —D*u, (1—aDu,)=0, (10)
where D =2m(4g, — 10*)!/? (11a)
and a=—D "3 [(47)3 VY (r))+ (72 /b)(w?+4g)] . (11b)

The perturbed SG equation has the kink solution which,
for a <<1, may be found, e.g., by the perturbation theory
(see, e.g., Ref. 13)

ui(x)=4tan " lexp(—ox /D)

an ![sinh(x /D)]
cosh(x /D) ’

The effective width of the kink (o0=-+1) or antikink
(o= —1) in that case is

D4s=D(1+1ano),

+igt (12)

(13)

and it depends sufficiently on the anharmonicity parame-
ter a. As is seen from Eq. (13), the values D for the
kink and antikink are different. The similar dependences
are valid for the effective mass of the kink

(14)

and the effective periodic potential stipulated by the
discretenesses effects (the so-called Peierls-Nabarro po-
tential)

mg=(4/mD)1—Ltoma),

It is important to compare the obtained results with those
for the one-dimensional FK model. In that case, the FK
model is described (in the continuum limit) by the same
SG equation (10) but with the parameters D, and ¢, (in-
stead of D and a),

D,=2m(g+4g,)'"?,
ao=— Q7 /Dy [V (ro)+8V5 (r)] .

(17a)
(17b)

As can be seen from (17b), the asymmetry of the kink and
antikink in that case is caused by the anharmonicity of
the interactions between atoms (~¥'"). Unlike that
case, the zigzag chain stipulates the asymmetry for any
type of interactions [cf. Egs. (17b) and (11b)]. To demon-
strate the differences, we present our results in two physi-
cally important cases.

Harmonic interactions. In the simplest case we put
Vir)=1g(r—a)?, V,(r)=1g,(r—a;)? a,=2a,. The
one-dimensional kinks are characterized by the parame-
ters Do=2m(g+4g,)'”? and a,=0. These kinks exist
provided a <a.=27w(1+w?/4g). The zigzag ground
state arises in the region (w?>1)

) 172
w t4g

a.,.<a<da, 1

r=0cr
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and, in this case, the kink parameters are
D =27T(4g1 _%QJZ)I/Z ’
B gal

(2,",)2(02_a§r )(4g1 _%(02)3/2 :

As a result, the zigzag structure of the kink leads to an
effective anharmonicity (a#0) unlike to the one-
dimensional chain.

Long-range power interactions. As is well known,®'* in
many cases the interaction between atoms chemisorbed
on a crystal surface may be described by the power law
Vi(r)=V,(r)=Vy(a,/r)", where n=1 or 3, V, being a
constant parameter. In such a case, the one-dimensional
kink has the parameters® Dy=[Vn(n+1)(1+27")]'/?,
ay=(n+2)/Dy. In the extended model, the zigzag
ground state arises provided V> (m®)?/n and the zigzag
kinks are characterized by the parameters

D=(mo)[y(n+1)/2"—1112,
a=n+2)7w)[2 " (n+1)—(y?/" 2 —1)"11/D3 |

8,12

where y=nV,/(ww)*>1. It is important to note that
the anharmonicity parameter @ may change its sign.
(Strictly speaking, to have a rigorous model in the latter
case, the interactions between all atoms of the chain
should be taken into account; see, e.g., Ref. 8.)

Thus, the creation of the zigzag ground state in the
chain leads to a drastic decreasing of the kink width and,
moreover, to changing of the sign of the anharmonicity
parameter. The effects are especially important near the
critical conditions when the one-dimensional ground
state becomes unstable. In this case, the ground state
corresponds to the one-dimensional chain [Fig. 1(a)], but
the kink has the zigzag structure shown in Fig. 2. Unfor-
tunately, such a case cannot be investigated analytically
in the lowest approximation used above because the pa-
rameter b in this case is small.

Finally, we briefly discuss the applicability of the mod-
el to describe surface diffusion of atoms adsorbed on
stepped or furrowed crystal surfaces when a monolayer of
atoms may be considered as a system of weakly interact-
ing FK chains. When the concentration 6 of the adatoms
is slightly lower than the value 6, corresponding to a
commensurate structure, the mass transport along the
chains may be treated as propagation of antikinks (or

7697

FIG. 2. Structure of the zigzag kink near the critical value of
the interatomic repulsion. That shown is the same as in Fig. 1.

kinks when 6% 6;). While the FK chains of adatoms are
exactly one dimensional, the anharmonicity parameter a
is positive and the activation energy for the surface
diffusion, €,, decreases jump-likely with increasing of the
parameter 6 when it passes the values 63" corresponding
to a set of commensurate structures of the chain, n being
the ratio of the periods of the chain and substrate. As a
result, the dependence €,(60) has to be of a form which is
similar to the reverse devil’s staircase (see the discussions
of such a dependence in Ref. 8). However, increasing the
concentration 6 leads to increasing repulsion forces be-
tween adatoms and, therefore, at some critical value 6,
(which has to be a function of the parameter w), the kink
structure is changed from that shown in Fig. 1(c) to that
shown in Fig. 2, and then to that shown in Fig. 1(d). At
0= 0,,, jumps of the function €,(0) corresponding to the
commensurate structures will decrease or they may
change their signs so that the activation energy will in-
crease jump-likely when 6 is changing through the values
05" (65> 6,,). We believe that the experimental obser-
vations of these effects could directly prove the soliton
mechanism of the surface diffusion of adsorbed atoms.

In conclusion, we have considered the generalized FK
model, which includes a transversal degree of freedom.
The most interesting result is the threshold creation of
the zigzag ground state of the commensurate chain and
propagation of zigzag kinks in this structure. We have
studied properties of the zigzag kink (antikink) in the
continuum limit and have demonstrated that the parame-
ters of the kink and antikink are different for any type of
interatomic interactions due to effective anharmonicity
stipulated by an effective coupling of two degrees of free-
dom. The obtained results may be useful to directly
prove a solitonic mechanism of surface diffusion of atoms
adsorbed on stepped or furrowed crystal surfaces.
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