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Abstract

A melting phase transition in a thin lubricant film confined between two substrates in moving contact is considered. General theoretical argu-
ments are usually used to prove that ordinary bulk melting is always a first-order phase transition. However, this is not the case for systems with
static and dynamic asymmetries. It is shown theoretically that a given tribological system can exhibit a novel two-stage continuous second-order
transition, which is confirmed by a Langevin molecular dynamics study.
© 2006 Published by Elsevier B.V.

PACS: 81.40.Pq; 46.55.+d
The interest in the problem of sliding friction between two
substrates in moving contact is due to both its applied engi-
neering importance and fundamental physical features [1–3].
Usually it is believed that liquid lubricants are more appropriate
for reducing friction than solid ones. However, when the width
of the lubricant film decreases to a few atomic layers, it usually
solidifies due to the high load and influence of substrates [1].
Thus, one of the crucial questions in tribology is the mecha-
nism of the liquid–solid transition in thin systems subjected to
an external sliding force. This question has been addressed in
different experimental and theoretical studies (see the first book
in Ref. [1] for a review), but there is still no clear comprehen-
sive picture of this phenomenon because of its richness and high
sensibility to external conditions and types of materials used.

The common picture of sliding dynamics with a solid lu-
bricant is as follows. At low driving velocities, the motion is
stick-slip-like, where short fast-sliding events due to the film
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melting are separated by long sticking ones when the film so-
lidifies back [4,5].

Stick-slip friction as well as solid–liquid transitions in gen-
eral have been studied theoretically in e.g. Refs. [6–8]. In spite
of the obvious success of the above cited and other theoretical
descriptions, these do not cover all the many possible scenar-
ios for liquid–solid transitions. The common feature of existing
theories is a treatment of the lubricant as a strongly-interacting
system, i.e., when the strength of potential of interaction be-
tween particles in the lubricant gll is much larger than, e.g., an
effective lubricant-driving substrate interaction gls (we will re-
turn to this point later). In such a case, friction leads to effective
isotropic heating of the lubricant, which finally melts when its
temperature T reaches the melting temperature of the lubricant
Tm, similarly to how it happens in an ordinary bulk crystal.

However, the picture can be quite different when the inter-
action between lubricant particles in a very thin film is weak
enough (in the sense that we define more precisely below). To
explain the general picture, let us first consider a simplified,
trivial system consisting of a lubricant whose particles do not
interact with each other but strongly interact with a substrate.
For simplicity, we consider a single layer where the lubricant
particles are initially placed to form a perfect quasi-2D crystal.
ems, Physics Letters A (2006), doi:10.1016/j.physleta.2006.09.062
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If we increase the driving force along one of the crystal planes,
then at some point the particles of the lubricant start to disor-
der along the direction of dynamical anisotropy (friction force).
Obviously in our idealized system there is no transversal force
because lubricant particles are non-interacting. Thus, the sys-
tem remains crystalline-like in the direction perpendicular to
the driving friction force. In other words, effective 1D melting
occurs in the system. It might look confusing that the system
forms a stable 1D crystal in the transverse direction, since it
was proved long time ago that stable 1D and 2D crystals can-
not exist in nature [11]. Indeed, let us imagine a crystal with
periodic density function ρ(z) consisting of atoms arranged in
parallel straight rows, where these rows are all equally oriented
along the z-axis, but completely randomly placed with respect
to each other. It can be shown that the change of free energy Φ

in this case is determined by the z-component of the displace-
ment vector uz only, �Φ ∝ u2

zkk2
z , where k is the reciprocal

lattice vector. The mean square of u2
zk scales as 〈u2

zk〉 ∝ k−2
z .

In order to find the fluctuation of the displacements, we have
to do a summation over all the wavevectors or integrate in the
Debye limit, 〈u2

z〉 ∝ ∫
k−2
z d3k, which diverges like 1/kz when

kz → 0. However, this is not the case in a finite system, where
we have to do a summation starting from some non-zero vector
kz ∼ 1/d , where d is the characteristic size of the system in the
z-direction. Therefore, there are no infinite range fluctuations in
real finite systems, but we still can speak about a quasi-stable
1D crystal only, because the fluctuations will apparently destroy
the order on certain time scales.

Some indications of the above-mentioned two-stage melting
mechanism have been observed in Langevin MD simulations
for soft lubricants [1,3,5,9], but have not been studied system-
atically. Similar effects were studied also in several papers (see,
e.g., [10]) in the context of vortex or defect dynamics in 1D
channels using different artificial models. Instead, we treat here
quasi-1D melting generally, without restrictions to the model
used.

Now let us formulate our idea more precisely for a realistic
system driven frictionally in terms of the effective longitudinal
T‖ and transverse T⊥ temperatures of the lubricant, compared
to its melting temperature Tm. It is clear that two-stage melt-
ing will occur in the system if the following conditions are met:
T⊥(gll, gls) < Tm(gll) < T‖(gll, gls). By the parentheses we ex-
press the important dependencies of all three temperatures on
the main system parameters (such as driving strength, interac-
tions, etc.). While gll can be rather well defined through the
static interaction potential between atoms of the lubricant, we
introduce the effective strength of the lubricant–substrate in-
teraction as gls = g

(s)
ls + g

(d)
ls , where the first term is due to

static interactions, while the second one is due to driving. Thus,
the lubricant can go from a more “hard” to more “soft” case
as g

(d)
ls increases, even if the static interactions are fixed. Ob-

viously, Tm(gll) is expected to increase monotonically as gll

increases (and it depends only weakly on g
(s)
ls ). Once gll is

fixed, both T‖(gll, gls) and T⊥(gll, gls) are generally expected
to increase with gls increasing in such a way that initially, at in-
finitesimally small driving g

(d)
ls → 0, we have T⊥(gll, gls) →
Please cite this article as: A.V. Zhukov et al., Two-stage melting in tribological sys
T‖(gll, gls) → T0(gll, g
(s)
ls ) < Tm(gll). Therefore, the system

should be rather “hard”, i.e., g
(s)
ls should not exceed some up-

per threshold value, g
(s)
ls < gmax(gll), which guaranties that (i)

the static friction force, i.e., the force needed to initiate sliding,
is small, and (ii) once the steady motion under driving sets up,
the condition T0(gll, g

(s)
ls ) < Tm(gll) is satisfied, or otherwise

the system will be unstable already under infinitesimally small
driving.

On the other hand, the system should not be too “hard”,
in order to be able to develop two substantially different tem-
peratures T‖(gll, gls) and T⊥(gll, gls) at the conditions of the
“melting” experiments. We always can introduce an effective
time scale for kinetic energy transmission from a substrate to
a lubricant as τls ∝ 1/

√
gls , and the time corresponding to the

lubricant equilibration as τll ∝ 1/
√

gll . Note, that here we only
discuss the total gls , which can vary depending on the driving
conditions, while the quantities g

(s)
ls and g

(d)
ls that play essen-

tially different roles in real systems, and whose definition de-
pends on the particular experiment setup, will be considered in
detail elsewhere.2 It is important to stress now only that in the
too “hard” lubricant, the full interaction satisfies gll � gls at all
driving strengths g

(d)
ls , so that the times τls and τll are compa-

rable (τll � τls ), the friction leads to effective isotropic heating
and results in the first-order melting transition, which is similar
to the bulk case.3 On the other hand, if the lubricant is “soft”
enough, so that gll � gls at some driving conditions, then the
kinetic energy transferred from a substrate is mainly associated
with longitudinal motion for a long time, until transverse equi-
libration occurs due to mutual lubricant interactions on the time
scale τll � τls .

To summarize, we state, that for an intermediate “hardness”
lubricant, if at some point the effective longitudinal tempera-
ture T‖ reaches a melting threshold Tm, while the transverse
temperature T⊥ does not, then we would observe a two-stage
phase transition similar to the one described above for the ide-
alized system. Furthermore, below we argue that at least the
first stage (effective 1D melting) would be a second-order (con-
tinuous) phase transition, in contrast to the classical picture of
liquid–solid transitions.

For distinctness, we consider the first stage (quasi-1D melt-
ing) of a two-stage phase transition. For convenience, we con-
sider the solidification process instead of the melting one. Let
ρ0 = const be the density of the 1D liquid. At the point of phase
transition it becomes ρ(z) = ρ0 + δρ(z) (we assume sliding
in the z-direction), where δρ(z) is the natural order parame-
ter of the system. Let us expand in plane waves as δρ(z) =∑

q ζq exp(iqz), where q are the reciprocal lattice vectors of the
quasi-1D crystal along the z-direction. In the spirit of the orig-
inal Landau theory [11,12], we suppose that the free energy Φ

2 For example, the driving strength g
(d)
ls

may depend on such other system
parameters, as the phenomenological damping η and driving velocity vd intro-
duced for a particular model later.

3 Actually, this has been the case for various effects studied for a long time as
discussed, for example, in Refs. [3,6,9]. We do not discuss them here in order
to keep the physical picture simple.
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can be expanded with respect to the order parameter as follows:

Φ(P,T‖, ζ ) = Φ0 +
∑

q

αqζqeiqz +
∑

q1q2

Aq1q2ζq1ζq2 ei(q1+q2)z

+
∑

q1q2q3

Cq1q2q3ζq1ζq2ζq3ei(
∑3

j qj )z

(1)

+
∑

q1q2q3q4

Dq1q2q3q4ζq1ζq2ζq3ζq4 ei(
∑4

j qj )z + · · · ,

where the coefficients α, A, C, and B are functions of the
pressure P and characteristic longitudinal temperature T‖. Ob-
viously, the expansion (1) can only contain terms for which∑

i qi = 0 to ensure the translational symmetry of the free en-
ergy Φ(P,T‖, ζ ). It is easy to show (see, e.g., [12]) that if
the states with ζqi

= 0 and ζqi
= 0 differ from each other by

their symmetries, then αq ≡ 0. In the symmetric phase, the
minimum of the free energy corresponds to ζqi

= 0, in which
case it is necessary to have all the coefficients Aq,−q as posi-
tive. On the other hand, in the non-symmetric phase, the mini-
mum of Φ(P,T‖, ζ ) is reachable for ζqi

= 0, which is possible
only if Aq,−q < 0. This means that at least one of the coef-
ficients Aq,−q must turn zero at the transition point. Suppose
this happens for some q = qc; then at the transition point all
the terms ζqi

= 0 except ζqc . In other words, the expansion (1)
contains only the plane waves with one definite wavelength qc .
However, this necessarily means that all the coefficients vanish
(Cq1q2q3 = 0) at the transition point, because there is no way
to satisfy the condition

∑
i qi = 0 with only the vectors qc and

−qc. Therefore, following the general theory [11,12], the phase
transition in such a system is second order, in contrast to ordi-
nary bulk melting, which is always first order.

To illustrate these points, we have chosen a simple enough
model, which still bears the essential features of the fric-
tional driving. Namely, we consider a 2D layer of atoms (lu-
bricant) embedded between two (top “t”, and bottom “b”)
isotropic substrates, moving in opposite directions along z with
the velocities vt = (+vd/2,0) and vb = (−vd/2,0). The en-
ergy of the isotropic substrate potential is given by V (z, y) =
ε/4[3 − cos(k−1 · r) − cos(k2 · r) − cos((k−1 + k2) · r)],
where k−1 = (2π/az,−π/ay) and k2 = (0,2π/ay) are two
reciprocal vectors of a triangular lattice, and we have chosen
ε = 2, az = 2π , and ay = √

3/2az. This simple function gives
isotropic minima organized into the triangular lattice and sepa-
rated by an isotropic energy barrier of height ε. The frequency
of the atomic vibrations near the minima of the potential is
also isotropic, ωz = ωy = ω0 ≡ (ε/2m)1/2(2π/az) = 1.0 (here
m = 1 is the atomic mass). The motion of atoms is governed
by the Langevin equations, mr̈i + mηṙi + ∂ri

Vt(ri − vtt) +
∂ri

Vb(ri − vbt) + ∂ri

∑
j =i Vi(|ri − rj |) = δFi , where ri =

(zi , yi) for the ith atom, and δFi is the Gaussian random
force with the correlation function 〈δF (α)

i (t)δF
(β)
j (t ′)〉 = 2η ×

mkBTLδαβδij δ(t − t ′).4

4 The Langevin temperature TL plays an auxiliary role in our simulation,
where we have taken it to be small, TL = 0.05, compared to the melting tem-
Please cite this article as: A.V. Zhukov et al., Two-stage melting in tribological syst
We assume an exponential interaction between the atoms
corresponding to the repulsion of atomic cores, Vi(r) = V0e

−βr ,
where r is the distance, β determines the interaction range
(in the simulation, we use β = 1/π so that a “diameter” of
the atom is 2π ). The strength of this interaction is taken as
V0 = (πe)2, which gives the characteristic frequency of the
vibrations associated with the interatomic interactions ω2

int ≡
V ′′

i (2π) = ω2
z = 1.0. In terms of the previously introduced

general parameters, this model setup corresponds to an inter-
mediate case between very “hard” and very “soft” lubricant,
g

(s)
ls = 0, gll = ω2

z = 1, and with a moderate variation of

g
(d)
ls (the latter is the stronger, the higher is the value of V0).

The periodic boundary conditions are imposed in both the z-
and y-directions in order to fix the atomic density, chosen to
correspond to the perfect monolayer (one atom per potential
well).

We study normally two systems, with 16 × 18 = 288 lu-
bricant atoms, and with 32 × 36 = 1152 lubricant atoms. This
allows us to estimate possible size effects and to see whether or
not the system’s size affects qualitatively our concepts. In the
selected runs we check for the absence of the finite-size effects
with a system four times as large, 64 × 72 atoms.

In the simulation, we first look for the minimum-energy
state of the lubricant layer (perfect triangular lattice) when the
two substrates are immobile and unshifted with respect to each
other. Then, starting from a very high value of the driving speed,
vd > 10 (where the substrates move with a rate much faster than
characteristic system frequencies, so that the lubricant film is
basically free, decoupled from the substrates, i.e., g(d)

ls is small),

we adiabatically decrease vd (thus increasing g
(d)
ls ). In the free

or “perfect sliding” state at high vd , the weakly-oscillating lu-
bricant layer still has a perfect triangular structure, imposed by
repulsive interaction and periodic boundary conditions. How-
ever, this state becomes unstable due to the first-order parameter
resonance [13] at a certain value of the driving velocity vcrit that
depends, in particular, on the value of the damping constant of
the system η (see [13] and references therein). At vd < vcrit, the
fluctuations of the atoms start to grow, and finally the perfect
structure of the layer becomes disordered.

While the details of the instabilities leading to disordering
is of importance here, it is the disordering process itself that
we monitor. In order to do so, we calculate the structure fac-
tor S(k) = 〈∑i,j exp(ik[ri (t) − rj (t)])〉 (here 〈· · ·〉 stands an
average over time) for three reciprocal vectors k of the tri-
angular structure, which may be attributed to the longitudinal
(along atomic rows in the z-direction) k±1 = (2π/az,±π/ay)

and transversal k2 = (0,2π/ay) orders in the lubricant layer,
respectively. The results are shown in Fig. 1 for different
values of the phenomenological constant η. This constant in
the Langevin equations describes the rate with which the en-
ergy is taken away from the lubricant layer by the substrates.
Therefore, one might expect that different values of η will re-

perature of the lubricant Tm and to the typical temperatures produced by the
driving itself, just to avoid the locking of the system in the metastable states.
ems, Physics Letters A (2006), doi:10.1016/j.physleta.2006.09.062
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Fig. 1. The system with 16 × 18 lubricant atoms. Heights of the longitudi-
nal k±1 = (2π/az,±π/ay) (blue and red colors) and transversal (black color)
k2 = (0,2π/ay) structure factor peaks for the triangular structure of the lubri-
cant layer versus the driving velocity vd , with a damping of η = 0.015. The
same data for η = 0.005 are shown on the inset. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version
of this Letter.)

Fig. 2. The same as in Fig. 1, but for the system with 32 × 36 lubricant atoms.

sult in different scenarios of the redistribution of the energy
of driving across different degrees of freedom in the lubri-
cant.

Figs. 1 and 2 show that the two-stage melting does occur
at the damping value of η = 0.015. Here we plot the struc-
ture factory peak heights, that correspond to the “longitudinal”
and “transverse” order parameters in the lubricant film, versus
the decreasing vd (i.e., versus increasing effective driving g

(d)
ls ).

One can see that the disordering along the direction of driving
occurs earlier and, furthermore, both peaks decrease smoothly
with vd , which indicates continuous second-order phase transi-
tions. At vd ≈ 10, when the lubricant film becomes completely
disordered along the z-direction, the slope of the transverse
order parameter versus vd increases, which indicates that the
driving energy is not spent anymore on the longitudinal dis-
ordering, but goes completely to disorder the system in the
transverse direction. By contrast, at a lower value of the damp-
ing constant η = 0.005, we observe sharp and simultaneous
melting both along the z-direction and transversally along the
y-direction. Noticeably, this sharp transition occur for both sys-
Please cite this article as: A.V. Zhukov et al., Two-stage melting in tribological sys
tems within the same very small range, that is an indication of
size independence of the transition concept. The effect of the
finite size only shows in the value of driving velocity at the
transition point.

In conclusion, we propose here a possible scenario of the
order–disorder transition in a thin lubricant film subjected to
sliding friction. We demonstrate a theoretical possibility for
the novel two-stage melting mechanism in such a system. Fur-
thermore, we argue that under certain conditions, the quasi-1D
melting appears to be a continuous second-order transition, in-
stead of first order as occurs in 3D systems. To illustrate our
point, we have carried out Langevin MD simulation of a simple
system, which support our conclusions. However, we have to
emphasize that our results must be treated prudently. Namely,
(i) in a strict sense, we cannot speak about the phase transition
in its usual sense because the frictional systems are out of equi-
librium; and (ii) the systems we study are simplistic models, so
that the further investigations with more realistic systems are
definitely needed.
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