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For the contact of two finite portions of interacting rigid crystalline surfaces, we compute the pinning en-
ergy barrier dependency on the misfit angle and contact area. This simple model allows us to investigate
a broad contact-size and angular range, thus obtaining the statistical properties of the energy barriers
opposing sliding for a single asperity. These data are used to generate the distribution of static frictional
thresholds for the contact of polycrystals, as in dry or even lubricated friction. This distribution is used
as the input of a master equation to predict the sliding properties of macroscopic contacts.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In a regime of dry friction or boundary lubrication of a sin-
gle contact, such as studied by atomic force microscope (AFM)
techniques, the friction force depends substantially and nontriv-
ially on the relative crystalline orientation of the facing surfaces,
as was demonstrated experimentally by Dienwiebel et al. [1]. Spe-
cial angles lead to superlubric sliding, but tend to be energeti-
cally unfavorable [2]. Depending on the contact mechanical de-
tails and the sliding speed, such superlubric orientations could
have long enough time to reconstruct, approaching a state with
a lower free energy but characterized by a higher barrier (aging),
or be retained for long enough for them to provide a substan-
tial superlubric contribution to the overall sliding dynamics. The
connection between the nanoscale, where friction occurs through
the breaking and formation of local contacts, and the meso- or
macroscale, where many breaking junctions interact elastically, is
commonly described by earthquake-type models [3–8], or by a
master-equation approach [4,9–12], or by models inspired to the
Greenwood–Williamson one [13,14] such as the sub-boundary lu-
brication model [15–17]. Except the case of ideally flat surfaces
such as mica in surface-force apparatus (SFA) experiments, con-
tact is always realized at microscopic asperities, whose size ranges
typically in the nanometer to micrometer range. Even when a lu-
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bricant is present at the contacting asperities, in a boundary or
sub-boundary lubrication context, the residual lubricant is often
frozen by pressure and confinement, and hydrodynamic viscous
sliding is replaced by a static (stick-slip) contact-breaking regime,
which we focus on in the present work. In the multi-asperity con-
tact, where relative orientation of individual asperities is not re-
ally under control, the most important information to be extracted
from a single-asperity model is the probability distribution Pc(εa)

of the slip activation barriers εa .
Molecular dynamics (MD) approaches to lubricated sliding fric-

tion [18–28] are usually forced to use some form of periodic
boundary conditions (PBC) in order to prevent the escape of lu-
bricant atoms (molecules) from the contacting region under high
load, and to keep the simulation size under control. PBC mimic the
infinite size limit, which might not be especially appropriate for
sub-micrometer–size contacts between sliding surfaces. Moreover,
a fully atomistic model would be computationally too demanding
for a full statistical study of the size and angular dependency of
the characteristics of contacts.

To study the contact, we introduce a simple rigid model for a
finite-size breaking junction realized by the contact of a finite por-
tion of two different crystalline surfaces. Such a rigid model could
not possibly account for wear or for the dissipation occurring at
contact breaking, as could MD simulations instead, but provides
semi-quantitative estimates of the barriers opposing the onset of
sliding, i.e., the static-friction thresholds. The simple model allows
us to evaluate the relevant statistical distribution of barrier ener-
gies. This distribution enters as a basic ingredient in the master-
equation formulation, which, depending on the general shape of
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this distribution leads to different macroscopic sliding regimes, ei-
ther stick-slip or smooth-sliding dynamics [9,10].

The present Letter reports progress beyond our MD study of
Ref. [28]. For the MD simulations of that work, we used a fixed
size of the contact area, and applied PBC to impose a given com-
mensurability ratio with minimal boundary effects, and to obtain
a fair comparison of different misfit angles φ. Of course, the fric-
tion force f , and in particular its dependency on the angle φ, does
change with the system size. For a larger contact area, increasingly
many incommensurate angles emerge, producing a more irregu-
lar dependency f (φ). In the limit of infinite size, f (φ) develops
an infinite number of singularities [29], but this limit is not to be
taken too seriously, since in practice a single contact of a given
crystalline orientation never exceeds a fraction of μm2 in practical
experimental conditions.

A numerical determination of the size dependency of f (φ)

would constitute a formidable task for MD simulations, since larger
sizes are not only individually more expensive computationally, but
would require a finer and finer sampling of angles φ and longer
equilibration times. It is instead straightforward to obtain the size
dependency of the rigid-island model. Thus, the main goal of the
present work is to find, at least qualitatively, the shape of the distribu-
tion of static thresholds Pc(εa), which is the main input of the master-
equation approach to friction on meso/macroscale, for a contact of
polycrystalline surfaces.

In Section 2 we spell out the details of this rigid-contact model
for the analysis of the static-friction barrier realized by the contact
of a crystalline surface with the boundary lubricant layer, which
we assume in a close-packed ordered configuration. Sections 3
and 4 discuss the angle and size dependency of the friction of a
nanocontact, and we compare our results with those of the MD
lubricated model [28]. The basic implications for macroscopic slid-
ing are discussed in Section 5 within a master-equation approach.
Section 6 summarizes and discusses our results.

2. The rigid-island model

We represent the sliding contact, or the solidified boundary lu-
bricant at the contact, with a finite rigid crystalline layer of lattice
constant a, consisting of N point-like atoms. We put it in inter-
action with a substrate potential which is also rigid and periodic,
e.g., a sinusoid of a generally different period as and amplitude V 0.
In the case of a one-dimensional system, one can easily find an ex-
plicit expression for the activation energy barrier for the onset of
motion along the chain:

εa = V 0

∣∣∣∣
sin(2π Na/as)

sin(2πa/as)

∣∣∣∣. (1)

Accordingly, for suitable values of the lattice constant, namely for
a = nas/(2N) with integer n (but not a multiple of N), this acti-
vation barrier vanishes and the chain moves freely. For a nonrigid
layer, the activation energy remains nonzero for all values of a, but
still reaches the first minimum at a/as ∝ 1/N: the motion in such
a case is of a “caterpillar” type (for details see Refs. [30,31]).

A two-dimensional “lubricant” island advancing over the 2D pe-
riodic substrate should exhibit a similar behavior: in particular,
a minimum for the activation energy is expected at a/as ∝ 1/

√
N .

The 2D system, however, has one extra degree of freedom, the ro-
tation. We expect that the activation energy would achieve minima
for specific misfit angles.

To investigate this pattern of minima, we consider a rigid island
of size N with a triangular lattice interacting with the simplest 2D
substrate periodic potential

V (x, y) = V 0(sin x + sin y) (2)
of square symmetry and lattice spacing as = 2π . The atomic co-
ordinates of the approximately square-shaped island are x̃i, j =
X + (i + j/2)a and ỹi, j = Y + jh, where h = a

√
3/2, and the in-

dexes i = − j/2, . . . ,− j/2 + ni − 1, j = 0, . . . ,n j − 1. The number
of atoms in the rigid flake is N = nin j , with nia ≈ n jh. X and Y
are the degrees of freedom for the translation of the rigid island.
If we rotate the island by an angle φ, then the atomic coordinates
change to xi, j = x̃i, j cosφ− ỹi, j sin φ and yi, j = x̃i, j sin φ+ ỹi, j cosφ.
For a fixed misfit angle φ, the total potential energy of the island
in contact with the substrate is

U (X, Y ) =
n j−1∑

j=0

ni−1− j/2∑

i=− j/2

V (xi, j, yi, j). (3)

The set of stationary points of U (X, Y ), defined by

∂U/∂ X = 0 and ∂U/∂Y = 0, (4)

consists of four elements: one minimum Um , two saddle points
Us1 and Us2, and one maximum. The nature of the stationary
points can be verified by computing the Hessian of U (X, Y ) at each
stationary point, but it is in fact simply provided by the values of
the function at the points. The activation energy for sliding is

εa = Us − Um, (5)

where the lower saddle energy Us = min(Us1, Us2) is considered.
The calculation of the energy barrier εa is extremely fast and ef-
ficient, since it only requires the search of the stationary points
in a 2D space, by solving a simple numerical equation (4). Given
the simplicity of this model, it allows us to compute εa for a very
fine sampling of angles and contact sizes, as would be practically
impossible if a fully atomistic simulation is used. Note that the
computed barrier height is relevant irrespective of the direction in
which the rigid island is pushed forward.

Although not completely equivalent, the activation energy bar-
rier is indeed related to the threshold force f s necessary to ini-
tiate sliding. To compare the results of the present rigid-island
approach with the fully atomistic simulations of Ref. [28], we take
a/as = 4.14/3, and assume that f s = κεa/as , where κ is a factor of
order unity. This comparison is shown in Fig. 1 for an intermediate
island size. We see that, at least qualitatively, MD and the present
simple rigid model agree on predicting static-friction minima near
a set of “special” angles. The singularities at the optimal angles are
exact zeroes for the rigid model: here the two lowest stationary
points of U (X, Y ) mutate into a degenerate trough. Unfortunately,
within the PBC setup of MD it is impossible to cover such a fine
sampling of misfit angles as allowed by the rigid model one: it
is thus impossible to verify to what extent the two models agree
or disagree on the specific superlubric angular orientations. The
purpose of this comparison is purely to highlight a general quali-
tative similarity of the outcomes of two models, which are distinct
and address significantly different physics. The main difference be-
tween the rigid model and the deformable lubricant film is that
the deformable model has a finite barrier against sliding for all an-
gles, even at optimal ones.

3. Barrier versus misfit angle

Fig. 2 shows the angular dependency of the barrier against
sliding εa(φ), for different sizes of the sliding island. The barrier
reaches its first minimum at a misfit angle φm ≈ π/(4

√
N ), which

moves to smaller and smaller angle as the size N of the island
grows.

Fig. 3 shows that high barrier energies εa correlate well with
rather stable configurations characterized by a low minimum en-
ergy Um , while low-barrier superlubric angles are usually charac-
terized by unstable (high Um) configurations. A higher stability of
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Fig. 1. (Color online.) (a) The static-friction force (immediately before slip) as a func-
tion of the misfit angle φ for a one-layer lubricant film at zero temperature for
different driving speeds, computed with MD simulations with in-plane PBC [28].
The friction force and driving speed are given in natural model units, of the order
1 nN and � 1 m/s respectively. For full details on these simulations, see Ref. [28].
(b) The activation energy εa (units of V 0) for the sliding of a rigid island composed
of N = 81 = 9×9 lubricant atoms over the rigid square substrate as a function of φ.

Fig. 2. The activation energy εa (units of V 0) as a function of the misfit angle φ for
three rigid lubricant islands composed by N = 9, 156 and 896 atoms.

a given angular configuration could make that configuration more
likely, if the asperity is free to rotate. We take this correlation into
account when we evaluate the distribution of depinning thresholds
in the rigid model, based on the evaluation of εa over a fine grid
of angles, as illustrated by Fig. 4. For a given contact size N , the
distribution of activation barriers exhibits weak divergences pro-
duced by the round maxima of εa(φ), plus jump discontinuities
produced by the “kinky” maxima associated to a crossing of the
Fig. 3. (Color online.) A direct comparison of the energy Um of the minimum
(dashed) with the activation barrier εa (solid), as functions of the misfit angle φ

for two sizes of the rigid island. Energies are in units of the substrate potential cor-
rugation V 0.

saddle points, as illustrated for two sizes by the comparison of
Figs. 3 and 4.

If the individual contacts are allowed the freedom and a suffi-
ciently long time to rotate, thermal fluctuations will lead to ge-
ometric relaxation, eventually leading to an appropriate angular
distribution Pφ(φ); if one can neglect the interaction of the con-
tacting grain with the rest of the slider, this distribution should
match a Boltzmann distribution Pφ(φ) ∝ exp[−Um(φ)/kBT ] of the
fully relaxed energy Um of the grain–substrate interaction. If, on
the contrary, misfit angles are frozen by the microcrystalline na-
ture of the surfaces in contact for much longer than the time of the
experiment, all angles are equally likely and Pφ(φ) is a constant
(equivalent to the limiting Boltzmann distribution for T → ∞).
Averaging with these two different weight patterns leads to re-
lated but significantly different distributions, as illustrated by the
comparison of dashed and solid lines in Fig. 4. Observe in partic-
ular that the effect of the Boltzmann weights is to suppress the
probability of small activation barriers εa: this is a consequence
of the stable angles (minima of Um) being typically associated
to high barriers εa , as remarked above (see Fig. 3). If the atomic
layer represents a frozen lubricant, then one should beware of
other φ-dependent energy contributions to be added to Um due
to the interaction with the crystalline anisotropy of the asperity
region of the upper slider. These extra terms would of course in-
fluence the Boltzmann weights in the fast-rotating condition, in
a way which could only be predicted in a condition where the
details of this interaction and relative crystalline alignment were
given.

4. The distribution of static thresholds

To describe friction in a meso- or macroscopic multi-contact
regime it makes sense to assume a distribution of contact sizes N ,
and obtain the statistical contact properties by averaging over N .
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Fig. 4. (Color online.) The distribution of activation barriers εa for two island sizes
reported in the corresponding panels of Fig. 3. The solid line is computed assuming
all misfit angles φ are equally likely, the dashed line weights different angles ac-
cording to a Boltzmann distribution of the corresponding minimum energy Um , for
a temperature kB T = V 0 matching the typical potential barrier of a single lubricant
particle.

For the size distribution one may take a Poisson distribution
P (N) = (N̄ N/N!)exp(−N̄) with an average domain size N̄ . We in-
clude clusters of nearly squared shape only.

By combining this size distribution with the distributions of
unpinning barriers for individual sizes N , calculated in the pre-
vious section, we obtain a global distribution of barrier heights.
The resulting distribution is displayed in Fig. 5, where we have
smoothened the singularities of the distribution for each individ-
ual size N by means of the convolution with a Gaussian of full
width at half maximum matching the average inter-peak spac-
ing (varying from 0.1V 0 to 2.5V 0). We see that this distribution
decays roughly exponentially by approximately two decades, and
then drops rapidly due to the fast large-size decay of the Poisson
function combined with the decreasing probability of barriers of
increasing height, as illustrated in Fig. 4b. The choice of a Poisson
distribution is not especially critical: a similar distribution of static
thresholds is obtained if we assume an exponential size distribu-
tion P (N) = N̄−1 exp(−N/N̄), see Fig. 5c.

The comparison of panels (a) and (b) of Fig. 5 shows that the
average contact size N̄ affects the quantitative detail of the dis-
tribution, but not its qualitative shape. Moreover, if we plot the
individual distributions as functions of the dimensionless rescaled
activation energy barrier

χ = εa/〈εa〉, (6)

all distributions may be roughly approximated by the exponential
function Pc(χ) = exp(−χ) as demonstrated in Fig. 6. Remarkably,
the general shape of the distribution of barriers of the rigid-island
model resembles the distribution, shown in Fig. 9 of Ref. [28], of
static thresholds in the lubricated model based on PBC and a single
size N = 80. The main visible difference is that, for the deformable
Fig. 5. (Color online.) The probability distribution of static thresholds for the rigid
domains averaged over the domain size N with the Poissonian distribution of av-
erage domain size (a) N̄ = 80 and (b) N̄ = 20. Inset (c): the probability distribu-
tion computed by averaging over an exponential size distribution exp(−N/N̄) with
N̄ = 50. Averaging over the misfit angle φ is carried out for solid (all angles are
presented equally likely) and dashed (different angles are weighted according to
the Boltzmann distribution) lines as in Fig. 4.

Fig. 6. (Color online.) The probability distribution of static thresholds Pc(χ) as a
function of renormalized barrier heights χ = εa/〈εa〉 for the rigid domains averaged
over the domain size N with an exponential size distribution exp(−N/N̄) with N̄ =
20 (dotted/black), 50 (dot-dashed/red) and 80 (dashed/blue).

domains of Ref. [28], the probability of small barriers is signifi-
cantly lower than for the rigid slider at hand.

Small barriers εa become also suppressed when the islands
can rotate so that angles are distributed thermally. As temperature
decreases, the distribution of static thresholds exhibits more and
more pronounced local maxima at values corresponding to min-
ima of the domain’s potential energy (see inset of Fig. 7).
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Fig. 7. (Color online.) The friction force F (X) (normalized on the X → ∞ limiting
value Fk , corresponding to the kinetic-friction force in the smooth-sliding regime)
as a function of the displacement X of the rigid slider for different distributions of
static thresholds shown in inset. Inset: the probability distribution of static thresh-
olds for the rigid domains averaged over the domain size N with an exponential
size distribution exp(−N/N̄) with N̄ = 50, when averaging over the misfit angle φ

is weighted according to a Boltzmann distribution of the domain energy, for differ-
ent temperatures.

5. Consequence for macroscopic sliding

Once the distribution of static thresholds is known, we can pre-
dict the dynamics of the tribological system with the help of the
master-equation approach based on an earthquake-like model [9–
11]. Consider the contact of two rough unlubricated substrates (top
and bottom) on a meso- or macroscale. If the position of the bot-
tom substrate is kept fixed and the top substrate is displaced by
a distance X , the interface force (shear stress) begins to grow,
F ∝ X . Then, the domains where the stress exceeds a correspond-
ing threshold value, start to slide, thus relaxing the local stress, and
the increase of the total force F will degrade. The overall average
dependence F (X) follows from a solution of this master equation,
where the distribution of static thresholds is the input parameter,
as discussed in detail in Refs. [9–11].

For the threshold distributions calculated above, typical depen-
dences F (X) are shown in Fig. 7. When the misfit angles are
distributed equally likely so that the distribution of static thresh-
olds is nonzero down to zero threshold and Pc(εa) has no sharp
maxima, the force F increases monotonically with X , approach-
ing the kinetic-friction force Fk characteristic of smooth sliding
for X → ∞. Thus, in such kind of macroscopic slider, static- and
kinetic-friction forces coincide, and the motion always corresponds
to smooth sliding. In contrast, when the threshold distribution
exhibits well pronounced sharp maxima, like for thermalized do-
mains or for an ordered homogeneous thin lubricant film, the
function F (X) reaches a maximum (which represents the macro-
scopic static-friction force Fs) greater than Fk , and then decreases
as the asperities give way collectively. For a soft enough slider, the
inequality dF (X)/dX < 0 for some X leads to the appearance of
the elastic instability in the system dynamics [9,10]. Under such
conditions, the macroscopic slider may exhibit stick-slip motion,
provided the slider is soft and the delay in contact reformation is
taken into account [11].

6. Discussion and conclusion

The calculations within the simple model at hand provide, first
of all, relevant insight for a single-asperity microscopic system, e.g.
for a flake sliding over an atomically flat surface, where the slider
may rotate and search for a local minimum of the potential en-
ergy. As a consequence, even if sliding starts off in a low-friction
state (e.g., in the superlubric state associated to a highly incom-
mensurate φ [1]), the flake will eventually rotate and spend most
of its time near a local minimum (Fig. 3 indicates that for the
triangle-on-square geometry of the present model such minimum
need not be φ = 0). Accordingly, after a relaxation time typical of
the flake rotation, friction should increase (as predicted by the
low-εa side drop of the distribution of Fig. 5). Such a behavior
was observed experimentally and in MD simulation [2]. Observe
also that an increased rate of thermally activated jumps across
the pinning barriers would additionally lead to a thermolubric
regime [32,33].

More than single-asperity experiments, the focus of the present
work concerns meso- and macroscopic sliding friction. At the
nanoscopic level, the friction force produced by a sliding contact
depends substantially and nontrivially on the relative crystalline
orientation of the facing surfaces. In the present work we provide
a basic tool to connect between the nanoscale, where friction oc-
curs through the breaking and formation of local contacts, and the
meso/macroscale, where many breaking junctions interact elasti-
cally, as commonly described by an earthquake-type model or by
a master-equation approach. The quantity that summarizes the in-
formation obtained by averaging over all possible contact sizes and
angles is a probability distribution Pc(εa) of the slip activation
barriers εa . Our simple model permits us to evaluate such a dis-
tribution of barrier energies, reaching beyond the small sizes and
few rotation angles allowed by detailed microscopical MD simula-
tions. This distribution is a basic ingredient for the master-equation
formulation, which, depending on the actual shape of this distribu-
tion can lead to different general macroscopic sliding regimes. The
analysis of the shape of this distribution allows one to understand
the physics of the meso/macroscopic sliding in terms of the under-
lying microscopic junction-breaking statistical properties.

Two basic regimes of macroscopic sliding emerge from this
model: (i) When superlubric alignments are suppressed by aging
to thermodynamically more favorable alignments, a nonmonotonic
peaked distribution Pc(εa) of barrier heights is obtained, which
tends to induce a macroscopic stick-slip regime. (ii) In contrast,
when the probability of weak activation barriers is sufficiently
large to produce a monotonically decaying distribution Pc(εa),
then macroscopic smooth sliding is possible, even in the presence
of microscopic breaking-junction dynamics.

The present simple and very idealized model is not meant to
address any specific properties of a well-defined contacting sys-
tem, but it focuses on the possibility to extract macroscopic sta-
tistical information out of the mechanical properties of contacts.
Many details of real contacts are left out, including surface curva-
ture, wear, local thermal expansion. For this reason, it would be
interesting (although extremely expensive numerically) to attempt
a similar statistical method using the MD simulations of a specific
contact described in terms of realistic force fields and curved sur-
faces. While the quantitative detail of Pc(εa) is likely to depend
on the specific contacting materials, its general properties should
mostly follow those determined by means of the present simple
model.
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