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Abstract

A multi-step dynamical phase transition from the locked to the running state of atoms in response to a dc external force is
studied by molecular dynamics simulations of the generalized Frenkel–Kontorova models in the underdamped limit. We show
that the hierarchy of depinning transition recently reported [Braun et al., Phys. Rev. Lett. 78 (1997) 1295] strongly depends
on the friction. In the present study we consider (i) a generalized FK model withhighly anisotropicquasi-one-dimensional
rectangular potential, and (ii) anisotropictriangular system, where the interactions between neighboring “channels” play an
important role in the dynamics. Copyright © 1998 Elsevier Science B.V.
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1. Introduction

The nonlinear response of a system of interacting atoms to a dc driving force has recently attracted a great interest
(see [1–10] and references therein), since the knowledge of themicroscopicmechanisms for mobility, friction and
lubrication processes is very important for a better understanding of solid friction atmacroscopic level, as well as
in various fields of applied science and technology such as adhesion, contact formation, friction wear, lubrication,
fracture, etc.

One generic example represents a layer of atoms adsorbed on a crystalline surface, often treated within the
framework of a generalized Frenkel–Kontorova (FK) model [11–13]. When an external dc force is applied to such
a system, its response can be very nonlinear and complex. By contrast, the driven motion of a single Brownian
particle in the external periodic potential has been studied in detail and is now well understood [14]. If a forceF is
applied to the particle, the total external potential in the directionx of the force is a corrugated plane with a slope
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F . For small forces the potential has local minima and the particle islocked. The local minima disappear at forces
higher thanFf 0 ≡ Cπε/a, whereε is the amplitude of the periodic potential,a its period andC a numerical factor
depending on the shape of the potential. Thus, when the applied force is adiabatically increased, the atom passes
from the locked to therunningstate atFf 0 and, the mobilityB = 〈v〉/F (where〈v〉 is the drift velocity) reaches
its maximal valueBf ≡ 1/mη, wherem is the atomic mass andη the friction coefficient. On the other hand, if
one decreases the forceF adiabatically starting from the running state, the critical forceFb0 ' 4η

√
mε/π for the

backward transition to the locked state is different owing to inertia of the system. Indeed, in the underdamped limit
(η � ω0, whereω0 is the frequency of atomic vibration in the external potential), the inequalityFb0 < Ff 0 holds
and one can observe ahysteresis: in thebistableregionFb0 < F < Ff 0, the particle is either locked or running
depending on its initial velocity. However, since the “forward” critical forceFf 0 is independent of the friction and
the “backward” forceFb0 grows linearly with friction, the width of hysteresis could vanish and, moreover, for a
single particle, the bistability disappears at any nonzero temperature.

The problem ofinteractingparticles in a periodic potential is much more difficult. If the nonlinear mobility of the
overdamped (η � ω0) FK model has been studied in a number of papers [1–4,9], investigations of the underdamped
case are very limited. In that context, Persson [6] observedhystereticdynamical phase transition, similar to theT = 0
one-particle case, in the MD simulation of a two-dimensional system of interacting atoms subjected to a periodic
potential. In addition, our recent work [10] on the underdamped generalized FK model revealed strong collective
effects in the dynamics of the dc-force driven layer of atoms. When the external force increases, the FK system
exhibits a complex hierarchy of first-order dynamical phase transitions from the completely immobile state to the
totally running state, passing through several intermediate stages characterized by the running state of collective
quasiparticleexcitations of the FK model known as kinks [10]. All the observed transitions are hysteretic and, it is
remarkable, that, by contrast with the case of noninteracting atoms, the hysteresis survives atnonzerotemperature
of the system.

However, the results [10] have been obtained for one value of the friction constantη and, in the present
work, we will be interested in the evolution of the observed dynamical transitions when the friction changed.
We present the dynamical “phase diagram” of the FK system in the(F, η) plane for a generic atomic concen-
tration (Section 3). Finally, we will consider not only ahighly anisotropicFrenkel–Kontorova model, but also
an isotropic triangular system, where the interactions between neighboring “channels” play an important role in
the dynamics. We will emphasize that the mobility of the system could varynonmonotonicallywhen the force is
increased.

2. The model

The detailed description of the generalized FK model, of the numerical procedure and also the explanation of the
choice of model parameters can be found in [10]; here we only outline the main aspects of the model. The atomic
motion is governed by the Langevin equation:

mẍi + mηẋi + d

dxi


Vsub(xi, yi, zi) +

∑
j 6=i

V0 exp(−β0|r i − rj |)

 = F (x) + δF

(x)
i (t) (1)

for the x coordinate ofith atom, and similar equations fory andz. Here,Vsub(x, y, z) is the external substrate
potential,V0 = 10 eV the amplitude andβ0 = 0.85 Å−1 the inverse of the range of interaction of pairwise repulsion
between atoms,F the dc driving force, andδF a Gaussian random force.
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To model the substrate, we used in the simulation a true three-dimensional external potential periodic in the
(x, y) plane, and parabolic in thez direction:Vsub(x, y, z) = Vxy(x, y) + 1

2mω2
zz

2 whereωz is the frequency
of normal vibration of a single atom. For the periodicVxy(x, y) part of the potential, we consider two different
cases:

(i) A highly anisotropic potential with rectangular symmetry of minimaVxy(x, y) = Vpr(x; asx, εsx, sx) +
Vpr(y; asy, εsy, sy) where

Vpr(x; a, ε, s) = ε

2

(1 + s)2[1 − cos(2πx/a)]

1 + s2 − 2s cos(2πx/a)
. (2)

The choice of the lattice constants,asx = 2.74 Å andasy = 4.47 Å , of theenergy barriers,εsx = 0.46 eV
andεsy = 0.76 eV, provide a high anisotropy of this potential, which can be viewed as the set of “channels”
with the corrugated bottoms, oriented along thex-direction. This potential is typical for the furrowed crystal
surfaces and our parameters were chosen for the Na-W(112) adsystem [10]. The parameterssx = 0.2,sy = 0.4
determine the frequencies of atomic vibration near the minima of potential,ωx(y) = ω0(1+ sx(y))/(1− sx(y)),
whereω0 ≡ (εsx/2m)1/2(2π/asx) = 1.09. Thus we haveωx = 1.65,ωy = 2.02.

(ii) An isotropic substrate potential with triangular periodicity of minima:

Vxy(x, y) = εsx

2

[
1 − cos

(
2πx

asxa

)
cos

(
πy

asy

)
+ 1

2

(
1 − cos

(
2πy

asy

))]
, (3)

where we chose the sameεsx , andasx as in the case (i), and putasy = √
3/2asx . Thus we have a potential with

a very isotropic energy barrierεsx , andωx = ωy = ω0 ≈ 1.09. In both cases (i) and (ii) we putωz = 1.84.
We want to emphasize that our choice of parameters does not claim to be a quantitative interpretation of the
concrete adsystem, because the model is oversimplified; however, we do believe on a qualitative description
and claim that typical adsystems should exhibit similar behaviors.

In the present work we study the behavior of the system in a wide range of frictions in the underdamped limitη �
ωx , corresponding to typical adsystems [15]. In the simulation, we first look for the minimum-energy configuration
of the system. Then, we adiabatically increase temperature and force; finally, we measure the mobilityB for given
valuesT andF (this procedure was described in detail in [10]). Here, in order to emphasize the phase transitions,
the system is studied at a very low substrate temperature,T = 0.0005 eV.

An important parameter of the generalized FK model is the atomic concentration. For the repulsive interatomic
interaction used in the present work, we have to impose the periodic boundary conditions in thex andy directions in
order to fix the concentration. We placeN atoms into the fixed areaLx ×Ly , whereLx = Mxasx andLy = Myasy ,
so that the dimensionless atomic concentration (coverage) is equal toθ = N/M (M = MxMy). The atomic
concentration in the FK system plays a crucial role since it defines the number of quasiparticle excitations called
geometrical kinks. These excitations can be defined for any backgroundcommensurateatomic structureθ0 = p/q,
wherep andq are relative prime integers [13,16]. If the concentrationθ slightly deviates from the background
valueθ0, the ground state of the system corresponds to large domains with background commensurate coverageθ0,
separated by localized incommensurate zones of compression (expansion) called kinks (antikinks). As we study
finite systems in the simulations, we must choose an appropriate system size to insertNk kinks into theθ0 = p/q

commensurate background structure; the integersN andM must therefore satisfy the equationqN = pM+Nk [16].
In the present work we consider the simpler case of atrivial (with p = 1) background coverage,θ0 = 1/2, so that
the kinks defined on the background of this coverage are calledtrivial kinks [13]. Namely, we chooseθ = 21/40,
which corresponds to domains of theθ0 = 1/2 coverage, separated by trivial kinks.
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Fig. 1. The mobilityB versus external forceF for the quasi-one-dimensional FK model whenθ = 21/40 coverage. We tookN = 105
andMx = 200, having thus ten kinks over the length under investigation with an average spacing of 20asx between kinks. The solid
(resp. dashed) curve corresponds to force increasing (resp decreasing). The arrows indicate the hysteresis.F is in the units of the constant
“forward” critical force for a single particleFf 0 = Cπεsx/asx ≈ 0.607.

3. Frenkel–Kontorova model with rectangular symmetry

In this section, we only consider the quasi-one-dimensional case (My = 1), since this simplified choice leads
only to a minor difference [10] in system behavior in comparison with the true two-dimensional FK system. Note
however, that even in this quasi-one-dimensional case the interaction between the atoms, as well as the atomic
motion still has the three-dimensional character.

3.1. Nonlinear mobility

The generic evolution of the mobilityB(F) for the friction constantη = 0.12ωx and coverageθ = 21/40 is
presented in Fig. 1. During the force-increasing process, one can distinguish several steps in theB(F) dependence,
corresponding to a hierarchy of depinnings of kinks [10]. AtF < Ftk ≈ 0.23Ff 0 the system is in the completely
immobile state, while atF > Ftk the system has a nonzero mobilityBtk due to therunning stateof trivial kinks
(Fig. 2(a)). It was shown in [10] that the forceFtk is related to the vanishing of the periodic Peierls–Nabarro potential
εPN for the trivial kinks under the effect ofF . The kinks start to slide atF > Ftk ≈ πεPN/asx . The second abrupt
increase of the mobility to the valueBm takes place when the force exceeds a thresholdFpair ≈ 0.35Ff 0, connected
with the vanishing of the energy barrier for creation of additional kink–antikink pairs in the system: the number of
mass carriers in the system increases leading to the increase of the mobility. The running kinks have the remarkable
tendency to come closer to each other, thus bunching into compact groups. This tendency is especially enhanced
after the second thresholdFpair, where the concentration of kinks is large. The bunched kinks build up dense groups
of immobile atoms withθ = 1, while the rest of the system consists of running atoms (corresponding to the running
state of force-excited antikinks). This state, very reminiscent of atraffic jam (Fig. 2(b)), survives until the last
threshold forceFf ≈ 0.53Ff 0; after that threshold, all atoms are sliding over the periodic potential and the system
reaches the highest possible value of the mobilityBf = 1/mη. During the force-decreasing process, the system
jumps back to the immobile state at the critical forceFb and, the large hysteresis survives at nonzero temperature
[10] contrary to the one-particle case.

As was mentioned in Section 1, the “forward” forceFf 0 for a single Brownian particle is independent of the
friction, while the “backward force”Fb0 is linearly proportional to the friction. By contrast, the situation is more
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Fig. 2. Illustration of the atomic motion in the regime of running kinks (a) and in the “traffic jam” regime (b). Immobile atoms are denoted
with gray circles, running atoms and atoms in the kink regions are denoted with black circles; arrows indicate the direction of atomic
motion.

Fig. 3. Dynamical phase diagram in the(F, η) plane for the quasi-one-dimensional FK model at theθ = 21/40, i.e. for the trivial kinks
on the background of simpleθ0 = 1/2 structure.

complex in the case of interacting atoms. Fig. 3 represents the dynamical phase diagram in the(F, η) plane, where
we plot the critical forcesFtk, Fpair, Ff andFb versus the friction coefficientη. Let us consider first the forward
transition from the locked to the running state. One can distinguish two regions of friction corresponding to different
scenarios of the transition.
(i) At very low frictions,η < 0.05ωx , there is no intermediate stage. When the force increases, the system jumps

from the locked to the running state directly at the forceFf , this force being exactly equal to the critical force
Ftk for thekink transition to the running state.

(ii) At larger frictions,η > 0.05ωx , the above-mentioned intermediate stages with running kinks exist. The second
difference from the very low friction region is that the “forward” forceFf and the kink–antikink nucleation
forceFpair arefriction-dependent(however, we do not plotFpair at higher frictions, because the “traffic jam”
regime is not well-defined due to finite-size effects [18]).

The backward transition from the running to the locked state has one interesting feature:Fb grows with η

increasing and one can even notice that at not too high frictions,Fb(η) exactly matches the lawFb0 ' 4η
√

mεs/π

for noninteractingatoms (dashed line in Fig. 3). If the friction is high enough,Fb is larger than the critical force for
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kinks Ftk =const. Therefore, atη < 0.1ωx the system jumps back to the completelylockedstate of atoms, while
at η > 0.1ωx the backward transition has also a multi-step character: when the force decreases, it first occurs a
drop of the mobilityB from Bf to the kink-mobility valueBtk and only at someF < Ftk the mobility vanishes
finally.

3.2. Phenomenological approach

The most interesting feature of the phase diagramF, η is that the critical forces, separating various intermediate
stages during the forward transition, arefriction dependent, except the first critical force, which corresponds to the
transition from the completely locked stage. We may conclude that the kinetic energy of the system in thepreceding
stage defines the transition to thefollowingstage.

First, let us consider the lowest interval of frictions,η < 0.1ωx , in the phase diagrams of Fig. 3. The explanation
of the dependence ofFf on friction in this region can be done solely with the help of kinetic arguments. Assume
the existence of a “critical” kink velocityvc, above which therunningkink cannot exist as a stable quasiparticle
(such a critical velocity does exist for the running kinks in the frictionless case [17]). Then, at given values of the
force F and the frictionη, if the kink drift velocity 〈vk〉 = F/mkηk is higher thanvc, the kink should destroy
itself as soon as it starts to move: it will immediately cause an avalanche driving the whole system to the totally
running state of atoms. In the phase diagram, the region(F, η), where the running kinks are stable, is bounded by
the straight lineF ∝ vcη, if one makes the additional assumptionηk ∼ η; this simple linear dependence (the dotted
line in Fig. 3) is in agreement with theFf (η) data forη < 0.1ωx . Thus, forη < 0.05ωx , when the applied force
exceeds the thresholdFtk, the stationary drift velocity for the kink is higher thanvc and the system goes directly to
the running state of atoms, andFf = Ftk = const in this region. However, atη > 0.05ωx , the kink can move as a
stable quasiparticle and the transition to the running state takes place at a higher forceFf ∝ η.

At higher frictions,η > 0.1ωx , Ff starts to deviate significantly from the simple linear law and finally tends to
a constant valueF ∗

f . This behavior may be qualitatively explained if we take into account that therunningkinks
stimulate the transition of the system to the totally running state. Indeed, owing to their nonzero kinetic energy
Tkink, the running kinks effectively reduce the average energy barrier for the transition of all the atoms to the
running state; therefore the effective barrierεeff should be lower thanεsx . Let us approximate the effective barrier
asεeff = εsx − Tkink, whereTkink ∝ 〈vk〉2 ∝ F 2/η2. Then, the critical force for the transition to the running state,
Ff = Cπεeff/asx , is determined by the following equation,

α

η2
F 2

f + Ff = F ∗
f , (4)

whereα > 0 is a phenomenological coefficient andF ∗
f ≈ Ff 0 ≡ Cπεsx/asx . Eq. (4) provides a qualitative

agreement with the simulation data: at smallη, the forward forceFf (η) = η
√

F ∗
f /α is proportional toη, while at

η → ∞ we haveFf → F ∗
f . This asymptotic forward critical forceF ∗

f has been found equal to the critical force

for a single atomFf 0 = Cπεsx/asx because the dimensionless elastic constantgeff = a2
sxV

′′
int(aA)/2π2εsx is well

below unity. Therefore, the interaction between atoms should not lead to a significant change of the barrier for the
transfer of one atom to the running state unless the running kinks contribute to this transition.

This qualitative picture holds also for other intermediate critical forces, and for a more complex atomic coverage
like θ = 21/31. In this case (it is described in detail in [18]), the state of runningtrivial kinks is preceded by the
state of runningsuperkinks, which leads to the dependence ofFtk on friction, due to the contribution of kinetic
energy of superkinks [18].
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Fig. 4. Atomic configuration with a domain wall of “light” kinks at theθ = 21/40 coverage withtriangular symmetry of the minima of
the external potential (atoms are denoted with gray circles, atoms in the kink regions are denoted with black circles, minima of external
potential are denoted with crosses).My = 20,Mx = 40 andN = 420.

4. Isotropic FK model with triangular symmetry

Let us consider now the two-dimensional array of atoms placed on a periodic substrate with minima situated on
a triangular lattice. To allow some comparisons with the anisotropic rectangular FK model, we have chosen the
background coverageθ0 = 1/2, whose minimum energy configuration was found [19] to be the c(2 × 2) structure
(see Fig. 4). In the 2D case, this structure allows for the existence of different types of kinks in domain walls (DWs).
For instance, if the center of a kink in one row is placed in front of an occupied (resp. empty) site in the neighboring
row, we will call it a “light” (resp. “heavy”) kink. The label is chosen according to the respective rest energies of
these two types of excitations. Starting from the minimum energy configuration containing only DWs of “light”
kinks illustrated in Fig. 4, we studied the nonlinear mobility in response to an external forceF applied along thex
direction.

TheB(F) dependences plotted in Fig. 5 for two generic values of the friction constantη = 0.15ω0 andη = 0.35ω0

show quite interesting behavior. There exist several intermediate regimes of the mobility between the locked state
B = 0 and the running stateB = 1. For the lower friction case, atFk ≈ 0.18Ff 0, one can observe a sharp increase
of the mobility whereas, surprisingly, atFd ≈ 0.26Ff 0, the system goes back to a locked stateB = 0. A nonzero
mobility reappears again atF > Fpair ≈ 0.32Ff 0 and, one can also observe the existence of a weak “shoulder” in
theB(F) dependence. Finally, atFf ≈ 0.4Ff 0, the system goes to the totally running state withB = 1. From the
other hand, at a higher frictionη = 0.35ω0, one can see two clear-cut intermediate plateau in theB(F) dependence:
one atFk < F < Fpair (whereFpair ≈ 0.4Ff 0) with the mobilityB ≈ 0.2 and, the second in the interval of forces
Fpair < F < Ff (Ff ≈ 0.75Ff 0) where the mobility isB ≈ 0.5; the intermediatelockedstate withB = 0 does not
appear at this higher friction.

A visual examination of the atomic configurations (see Fig. 6) clearly reveals the nature of the complex atomic
motion at the intermediate stages. Fig. 6(a) shows the typical atomic configuration at the first intermediate plateau
of the mobility atFk > 0.18Ff 0. The atoms in the body of c(2×2) are immobile and, they perform slip-stick
motion only in the regions of DWs. Therefore this plateau is characterized by the running state of the “light” DWs.
Consequently, the critical forceFk can be interpreted as the force at which Peierls–Nabarro barrier for the translation
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Fig. 5. The mobilityB versus external forceF for the triangular FK model at theθ = 21/40 coverage.F is in the units of the constant
“forward” critical force for a single particleFf 0 = πεsx/asx ≈ 0.527.

of these DWs has vanished. Moreover, it is interesting to notice that initially tilted (relatively to the direction of the
applied force), the domain walls line up perpendicularly to the applied force during their motion.

With a further increase of the applied force the velocity of running DWs also increases and at a critical force
Fd , the domain walls become unstable anddestroythemselves. This results in thedisorderingof the whole system,
which loses the c(2×2) structure (see Fig. 6(b)) and goes to a disordered state with zero mobility since the concerted
regular atomic motion (running kink DWs) is no longer possible. We emphasize that this state is ametastablestate
(it can be checked by performing “backward” runs, i.e. reducing force toF = 0 starting from the disordered locked
state of Fig. 6(b)). It is instructive to remind the famous “frustration” problem for the triangularlattice-gas(or
Ising) model at coverageθ0 = 1/2 (see e.g. [20] and references therein). Indeed, if the repulsion of adatoms in
the lattice-gas model is restricted to nearest neighbors, the ground state atθ0 = 1/2 is disordered and infinitely
degenerated. However, in the continuous model and for a larger range of the interatomic interaction, the ordered
ground state does exist (the c(2×2) structure in our case), but is probably still surrounded by metastable disordered
“neighboring” states in the energetic spectrum. Thus, with the increase of the force, when the total energy of the
system increases due to the kinetic energy of running DWs, the system can be trapped in such a metastable state.
By contrast, at a higher frictionη = 0.35ω0, the drift speed of domain walls is lower and they can exist in the
stablerunning state until the critical forceFpair corresponding to a switch to another specific kind of slip-stick
motion.

The atomic motion at the next intermediate stageFpair < F < Ff is illustrated in Fig. 6(c). The atoms can move
not only in the region of the domain walls, but also in the body of c(2×2) structure. Therefore, similarly to the
“traffic jam” regime in the case of the quasi-one-dimensional rectangular FK model (Fig. 2(b)), this picture can be
interpreted as the creation of kink–antikink pairs (“light” kinks) inside the c(2×2) structure. At an instant of time,
only half of the atoms in a single c(2×2) domain are able to move forF > Fpair; e.g. moving atoms, situated in the
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Fig. 6. Atomic patterns at the intermediate stages of theB(F) dependences plotted in Fig. 5: (a) regime of running domain walls;
(b) locked disordered state; (c) “mirror switching” regime. Immobile atoms are denoted with gray circles, running atoms and atoms in
the kink regions are denoted with black circles, arrows indicate the direction of atomic motion.

center of the c(2×2) unit cell, belong to even rows (Fig. 6(c)). These atoms can move to the neighboring sites inside
their cells, changing the symmetry of the given c(2×2) domain to its mirror image. The complementary sublattice
is then able to move in the same way reverting its structure to the previous symmetry. This regime can therefore
be represented as a periodic change between the two mirror images of a c(2×2) domain; we call it as a “mirror
switching” regime (Fig. 6(c)). As roughly half of the atoms are moving, the value of the mobility isB ≈ 0.5 in this
regime. One should also note that, even atF < Fpair, when anexistingsingle DW passes by a given c(2×2) domain
(Fig. 6(a)), it also changes the mirror symmetry of this domain. However, atF > Fpair, the atomic motion can be
represented as a spontaneous nucleation of the two possible islands (“odd rows immobile/even rows mobile”-island
or vice-versa) inside the background structure with the subsequent coalescence of these islands. Because of the
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coalescence process, one can observe a slight decrease of the mobility with force (or simulation time) increasing
(see Fig. 5(b)). Indeed, when the size of such islands increases, the number ofcompletelylocked atoms inside
the islands increases too, since at the boundaries between islands (their number decreases during coalescence) all
the atoms are rather moving than locked. Of course, the “mirror switching” regime is observed also for initial
configuration without kinks, i.e. for the coverageθ0 = 1/2.

The dynamical phase diagramF, η for the triangular system will be presented elsewhere [19]. Here we emphasize
that similarly to the rectangular case, the intermediate critical forcesFf , Fd , Fpair are found to be friction-dependent
namely they grow approximately linearly with frictionη (at the same time the “first” forceFk = const), which
confirms our conclusion, that the critical quantity for the dynamical transitions studied is thevelocityof kinks (or
domain walls). In particular, in the friction interval 0.1ω0 < η < 0.2ω0 the relationFk < Fd < Fpair is fulfilled,
leading to the existence of the non-monotonic dependenceB(F).

5. Conclusion

In summary, we have studied the dynamical phase transition from the locked to the running state of interacting
atoms in a periodic external potential under the action of a dc external force in the underdamped limit of a generalized
Frenkel–Kontorova model. This transition proceeds by a complex multi-step scenario, which can be treated as
a hierarchy of depinnings of quasiparticle excitations of the FK model (kinks). The interesting feature of the
transition is that the critical forces separating different intermediate stages during the “forward” transition are
friction dependent, except the first critical force which corresponds to the transition from the completely locked
ground state. This reflects the dynamical nature of transitions between intermediate stages, i.e. the main role of the
kinetic energy of running kinks for the transition towards thefollowingstage.

On the basis of simulation results, we have proposed a phenomenological approach which qualitatively explains
the observed friction dependences of the critical forces. According to this approach for low frictions, the critical
quantity determining the criterion for the transition to the totally running state of atoms is the drift velocity of kinks
at the preceding stage. This approach leads to the simple phenomenological equation (4) for the dependence of the
forward critical force on friction. However, for a quantitative description of the simulation results, one has to take
into account the resonant interaction of the running kinks with the phonon bath [17,21]. Work along this line is in
progress.

We have studied two distinct shapes of the periodic external potential: one is a highly anisotropic (quasi-one-
dimensional) potential with a rectangular symmetry of minima, and the other is an isotropic potential with triangular
symmetry. For the first one, the generic scenario corresponds to the staircase-like growth of the mobility with the
increase of the external force. By contrast, the case of the triangular external potential gives rise to an interesting
novel feature of the dynamical phase transition studied. Namely, the mobility can varynonmonotonicallywith
increasing force. Indeed, after the intermediate regime of running DWs withB 6= 0, the system can be then trapped
in a metastable disordered immobile state (B = 0) due to the destruction of the running domain walls of kinks when
they reach a critical speed. Finally, we observed for the case of the triangular potential new specific slip-stick stage,
called “mirror switching” regime.
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