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Abstract

Driven diffusive models describe an array of atoms in an external periodic potential, when

the motion is damped due to energy exchange with the substrate. The systems of this class have

wide application in modeling of charge and mass transport in solids. Recently, the driven

diffusive models have been used in tribology, where the driving force emerges due to motion of

one of two substrates, which are separated by a thin atomic layer. When a dc force is applied

to the atoms, the system exhibits the locked-to-sliding transition. During the transition the

system may split in domains of two kinds, the running domains where the atoms move with

almost maximum velocity, and the immobile domains (‘‘traffic jams’’). We discuss a new

model for a 1D chain, where the particles have a complex structure treated in a mean-field

fashion: particle collisions are inelastic and also each particle is considered as having its own

thermostat. This model exhibits a hysteresis and the ‘‘traffic jams’’ state even at high

temperatures due to the clustering of atoms with the same velocity.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Driven diffusive systems belong to simplest models of nonequilibrium statistical
mechanics. These systems are characterized by a locally conserved density, and a
uniform external field sets up a steady mass current. The systems of this class have a
wide application area in modeling of charge and mass transport in solids. Last years
see front matter r 2005 Elsevier B.V. All rights reserved.
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the driven diffusive models are used in tribology, where the driving force emerges
owing to motion of one of two substrates separated by a thin atomic layer.

We consider phase segregation in a system consisting of complex particles which
have their own structure with internal degrees of freedom. The internal modes may
be excited due to inter-particle collisions that take away the kinetic energy of the
translational motion so that the collisions are inelastic. This is a typical situation in
soft-matter physics, e.g., in physics of granular gases [1–3].

The kinetic energy of atomic translational motion that is lost in a collision is
stored as the energy of excitation of internal degrees of freedom and may be released
later as the kinetic energy. In a simple case, when the number of internal degrees of
freedom is ‘‘large’’ and their coupling is nonlinear, the energy lost in collisions is
transformed into the ‘‘heating’’ of particles. We propose a new type of stochastic
models, the model with ‘‘multiple’’ thermostats, where, in addition to the standard
‘‘substrate’’ thermostat, each particle is considered as having its own ‘‘thermostat’’.
A natural description of such a model is one with a specific type of Langevin
equations.
2. Model

Let us consider a one-dimensional (1D) system of particles with nearest-neighbors
(NN) inelastic interaction, subjected to a sinusoidal substrate potential
V subðxÞ ¼

1
2
�s½1 � cosð2px=asÞ�. It is a generalization of the well-known Frenkel–K-

ontorova (FK) model (e.g., see [4] and references therein). Namely, we consider a
chain of N atoms distributed over M minima of the substrate potential with periodic
boundary conditions. The equation of motion for the lth particle has the form

m €xl þ mZ _xl þ V 0
subðxlÞ ¼ �f lþ1;l þ f l;l�1 þ dF lðtÞ þ f , (1)

where the dot (prime) indicates the time (spatial) derivative. To each atom we apply
an external dc force f and a viscous damping force. The coefficient Z describes the
energy exchange with the substrate. The substrate thermostat is modeled by the
Gaussian stochastic force, dFlðtÞ, which has zero average and the standard
correlation function

hdFlðtÞdFl0 ðt
0Þi ¼ 2ZmkBTdll0dðt � t0Þ , (2)

where T is the temperature and kB is Boltzmann’s constant. Throughout the paper
we use dimensionless units with m ¼ 1, as ¼ 2p and �s ¼ 2. Also, we set kB ¼ 1, so
that T is measured in energy units.

The interaction is chosen in an exponential form, V intðxÞ ¼ V 0 expð�gxÞ. The
amplitude, V0, is related to the effective elastic constant g, g ¼ ða2

s=2p2�sÞV
00ðaAÞ,

where aA ¼ asM=N is the average distance between the atoms. The exponential
potential reduces to the harmonic one in the limit g ! 0 and to the hard-core
potential in the limit g ! 1.

The inelasticity of collisions is modeled by a viscous damping force proportional
to the relative velocity of two atoms. The mutual interaction between the lth and
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ðl � 1Þth atoms is described by the force f l;l�1:

f l;l�1 ¼ �V 0
intðxl � xl�1Þ � mrZlð _xl � _xl�1Þ þ df lðtÞ . (3)

The first term on the r.h.s. of Eq. (3) describes the elastic interaction, the second term
describes the inelasticity due to viscous damping, mr ¼ m=2 is the reduced mass of
two colliding atoms, and the last term is the stochastic force that compensates the
energy losses due to inelasticity,

hdf lðtÞdf l0 ðt
0Þi ¼ 2ZlmrkBTdll0dðt � t0Þ . (4)

The mutual damping, Zl , is chosen to depend on the distance between the NN atoms
in the same way as the potential, Zl ¼ Z� exp½�gðxl � xl�1 � aAÞ�, where Z� is a
parameter which describes the inelasticity: the interaction is elastic in the case of
Z� ¼ 0 while in the limit Z� ! 1 the collisions are completely damped.

The set of Langevin equations (1)–(4) is equivalent to the Fokker–Planck–Kra-
mers equation for the distribution function W ðfxlg; f _xlg; tÞ,

qW

qt
þ

X
l

_xl

qW

qxl

þ ½f � V 0
subðxlÞ þ V 0

intðxlþ1 � xlÞ � V 0
intðxl � xl�1Þ�

qW

q _xl

� �

¼
1

2

X
l

q
q _xl

ð2Zþ Zlþ1 þ ZlÞ _xl þ T
q
q _xl

� ��

� Zlþ1 _xlþ1 þ T
q

q _xlþ1

� �
� Zl _xl�1 þ T

q
q _xl�1

� ��
W . ð5Þ

It is easy to check that in the undriven case, f ¼ 0, the Maxwell–Boltzmann
distribution is a solution of Eq. (5). Thus, the inelastic FK model introduced above,
has the truly thermodynamically equilibrium state.

In the driven case, fa0, the thermal equilibrium state is destroyed and the system
exhibits a transition from a locked state at low driving (with exponentially low
mobility at low temperatures) to the sliding (running) stationary state at high
driving, where all atoms move with almost the same velocity, f =mZ. For the classical
FK model, when the interactions are elastic, the locked-to-sliding transition was
studied in a series of papers [5–7]. At zero temperature, T ¼ 0, the average velocity
of the atoms as a function of f exhibits hysteresis, but at any T40 the hysteresis
disappears for an adiabatically slow change of the driving in the 1D model. Besides,
for nonlinear interactions, the steady state during the locked-to-sliding transition for
some range of model parameters may correspond to a specific ‘‘traffic-jam’’ (TJ)
state with an inhomogeneous spacial distribution of atoms [5,6].

In the present work, we show that both of these properties of the transition change
drastically for an inelastic interaction. First, the system exhibits hysteresis even at
very high temperatures. Second, the TJ regime is observed for a much wider range of
model parameters, thus, it is a generic property of the system. Both effects appear
because of a clustering of atoms as was predicted by Cecconi et al. [3]. Indeed, in the
case of inelastic interaction, the energy losses are minimal when the NN atoms move
with the same velocity and the mutual viscous forces are zero.
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3. Results

In simulations, we choose N=M ¼ 144
233

, which is close to the ‘‘golden-mean’’ atomic
concentration. The force was typically changed at the rate R � Df =Dt � 2 � 10�7,
which is low enough to be considered as adiabatically slow. Typically, we used the
following parameters: Z ¼ 0:01, g ¼ 1=p so that the dimensionless anharmonicity
parameter is gas ¼ 2, g ¼ 1 (recall that in the classical FK model the Aubry locked-
to-sliding transition [8] takes place with the increase of g at g � 1), and T ¼ 1 which
is quite large as compared with the barrier height �s ¼ 2.

The simulation results for the normalized mobility B ¼ hvi=vf are presented in
Fig. 1. Here, hvi ¼

PN
l¼1 h _xlit=N, h. . . it stands for averaging over time and vf �

f =mZ is the maximum atomic velocity. One can see that while there is no hysteresis in
the Bðf Þ dependence in the ‘‘elastic’’ model (a narrow hysteresis of the width Df ¼

0:0025 exists due to the finite step of force changing), hysteresis does exist for Z�40
and its width strongly increases with Z�. Moreover, the width of the hysteresis does
not change essentially if the rate of force variation changes in 25 times as shown in
the inset in Fig. 1 (left panel). We emphasize that the hysteresis in Fig. 1 is for a quite
large temperature T ¼ 1, and it survives even at T ¼ 2, when �s=kBT ¼ 1. In the case
Z� � 0:0393, the dependence DF ðTÞ ¼ f forward ðTÞ � f backwardðTÞ may be fitted by the
exponential dependence DF ðTÞ ¼ DF0e�T=T�

with DF0 � 0:156 and T� � 0:76.
Therefore, the hysteresis disappears when DF ðTÞtDf which givesTm\3:15.
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Fig. 1. Left panel: dependence of the normalized mobility B on the force f for three values of the intrinsic

damping: Z� ¼ 0 (up triangles, the ‘‘elastic’’ model), Z� ¼ e�aA � 0:0393 (down triangles), and Z� ¼
10 e�aA � 0:393 (diamonds) for an increasing force (solid curves and symbols) and a decreasing force

(dotted curves and open symbols). Other parameters are the following: g ¼ 1=p, g ¼ 1, Z ¼ 0:01, and

T ¼ 1. Inset: Bðf Þ for Z� � 0:0393 for three values of the rate of force changing: R � 10�6 (up triangles),

R � 2 � 10�7 (down triangles), and R � 4 � 10�8 (diamonds). Right panel: atomic coordinates as

functions of time in the ‘‘traffic-jam’’ regime for f ¼ 0:095, Z� � 0:0393, g ¼ 1=p, g ¼ 1, Z ¼ 0:01, and

T ¼ 1.
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Qualitatively the existence of hysteresis may be explained in the same way as in
Ref. [6]. The system cannot be transformed from the locked state to the running state
and vice versa as a whole. First, a small cluster of atoms (a critical ‘‘nucleus’’) should
undergo the transition, and then it will expand over the whole system. In the ‘‘soft’’
model considered here, where a fluctuation of the relative velocity of the NN atoms
is suppressed, the probability of the emergence of a nucleus with a maximum velocity
in the background of immobile atoms (as well as the nucleus of locked atoms in the
sea of running ones) is much lower than that in the elastic model.

The hysteretic behavior described above clearly indicates the clustering of atoms in
the soft FK model. One more indication of this effect is the plateau at B�0:5 in the
Bðf Þ dependence of Fig. 1, which corresponds to the TJ regime. The TJ state appears
in the interval of forces 0:09pfp0:0975 in the force-increasing process and survives
till fX0:0725 if the force decreases starting from the TJ state. The atomic trajectories
in the TJ state are shown in Fig. 1 (right panel). In Refs. [5,6] we have shown that in
the anharmonic FK model the inhomogeneous state may correspond to the TJ state
when the chain splits into regions of totally immobile atoms (TJ) separated by
regions of running atoms. The same TJ state appears in the present model and,
moreover, now it is observed for a much wider range of model parameters and high
temperatures.

The phase segregation in the driven model can be explained with the help of the
generalized lattice-gas model [9]. As was shown in Refs. [5,6,9], the normalized
mobility of the steady state with a coexistence of two phases, the TJ phase consisting
of locked atoms and the running domain (RD), is equal to B ¼ byrð1 � yÞ=ð1 � yrÞy,
where b ¼ vr=vf � 1, y ¼ N=M, yr is the local concentration in the RD and vr is the
average atomic velocity in the RD (see Fig. 1, right panel). In the case of a single TJ
in the sea of running atoms, TJ grows from its left-hand side with the rate
Rþ ¼ vr=ar, where ar ¼ as=yr, while from its right-hand side TJ shortens with a rate
R� due to ‘‘evaporation’’ of the right-most atom of TJ into RD. At a low
temperature and driving force, when �ðf Þ � �s � fas=2bT , the ‘‘evaporation’’ of the
right-most atom of TJ is an activated process and its rate is R�ðf Þ / exp½��ðf Þ=T �.
The TJ may exist only if R�pmax Rþ. This leads to a condition on the temperature,
i.e., T must be lower than some critical value. In the TJ steady state the growing and
evaporating rates must be equal to each other, Rþ ¼ R�. This gives
yr ¼ mZasR�ðf Þ=fb. The function yrðf Þ has a minimum at f ¼ 2T=as, and the same
must be true for the Bðf Þ dependence: the normalized mobility first decreases and
then increases with f. This is in agreement with the simulation results of Fig. 1. The
inequality yrðf Þoy defines the range of model parameters and forces, where the TJ
steady state could be stable, i.e., the damping Z should be lower than some critical
value Z0�0:5.
4. Conclusion

Thus, the TJ state may appear only in the underdamped system when the substrate
damping Z is low enough and an atom exhibits bistability, i.e., when both states, the
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locked state and the running state, coexist (and are dynamically stable) at the same
driving f. Then the locked-to-running transition should always pass through the TJ
state. In the soft model with inelastic interaction, the system exhibits hysteresis even
at high temperatures. The reason why the 1D model exhibits hysteresis is that the
soft model is effectively infinite-dimensional. The particles have an infinite number of
internal degrees of freedom treated in a mean-field fashion. Second, the soft model
allows the coexistence of two phases (the TJ regime) for a much wider range of
model parameters. Both effects are due to the clustering of atoms in the soft model.
The mechanism of clustering is the same as described by Cecconi et al. [3], but our
model is essentially different from the latter. There is no artificial freezing in our
model and, as a result, the correlated motion emerges solely due to the mutual
damping of the NN atoms.

In the present work, we considered the 1D model with a repulsive interaction,
when the classical (elastic) model should not exhibit phase transitions. In a 2D or 3D
system, especially if there is also an attractive branch of the interatomic interaction,
the changes due to inelasticity should be even more dramatic. Of course, the
damping mechanism cannot change the phase diagram of the system, but it certainly
will change the kinetics of phase transitions as well as possible metastable states in
which the system may be captured.
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