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PACS 81.40.Pq – Friction, lubrication, and wear
PACS 46.55.+d – Tribology and mechanical contacts
PACS 61.72.Hh – Indirect evidence of dislocations and other defects (resistivity, slip, creep,

strains, internal friction, EPR, NMR, etc.)

Abstract – We show that new important features are brought to the kinetics and dynamics of
frictional stick-slip motion in an earthquakelike model of boundary lubrication by introducing a
distribution of static breaking thresholds of individual contacts. In particular the condition for
elastic instability and details of the slip motion are heavily affected. Among the novel emerging
properties is the role of other parameters such as the delay time of contact reforming, the strength
of elastic interaction between the contacts, and the elasticity of the contacts and of the slider.
We simulate the model dynamics, choosing parameters appropriate to describe a recent surface
force apparatus experiment (Klein J., Phys. Rev. Lett., 98 (2007) 056101) whose results are now
explained with a totally normal boundary lubricant film viscosity.
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Introduction. – This letter presents a theoretical
model and related simulations of frictional stick-slip across
an atomically thin, but macroscopically sized, film of lubri-
cant (“boundary lubricant”). This time-honored problem
has attracted over the years a large amount of exper-
imental and theoretical work, as we will detail below.
One problem in this area remains the need to access
clear, accurate data suitable for a fully quantitative assess-
ment of theoretical models. Luckily, in the surface force
balance (SFB) technique [1–3], lubricated friction with
lubricant films down to atomic thicknesses have nowa-
days become measurable with high accuracy between
macroscopically sized (∼ 20µm) atomically smooth mica
surfaces. In the experiment, friction exhibits a clear stick-
slip. The slip event, in the ms range, is noticeably slowed
down by the lubricant relatively to a strictly inertial dura-
tion τs ∼Ω

−1
S ∼ 10

−3 s (here ΩS = (K/M)
1/2 is the natural

frequency of the slider, of massM and spring constantK).
If, as is sometimes assumed, the slip is accompanied by a
uniform, massive lubricant melting event (boldly extend-
ing to macroscopic sizes the nanosize melting suggested by
early simulations [4–6]) then the delaying factor would be
the lubricant’s viscosity. In turn that would require viscos-
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ity values 104 to 107 times higher than the bulk lubricant
viscosity [3,7,8]. The latter, however, is in conflict with
squeezing experiments [9,10].
Our observation is that a thin lubricant film will more

realistically be inhomogeneous at the mesoscale lengths
involved in these experiments, so that the description of
slip as a single massive lubricant melting event following
depinning must be, even for ideally flat sliding surfaces,
an oversimplification. On a mesoscopic or macroscopic
length scale the atomically thin solid lubricant film will
form domains with different orientation, possibly different
structure and generally different yield stress thresholds [4].
This inhomogeneous film is unlikely to melt massively and
to begin sliding all at once; rather, different domains will
generally yield and start sliding one by one, as in the well-
known earthquake (EQ) Burridge-Knopoff models, largely
employed in a great variety of frictional studies [11–18].
Our scope here is to work out an implementation of the
model suited to describe the onset of stick-slip in the
SFB boundary lubrication experiments, and to explain
the experimental results in this realistic frame.
Persson [14] first adjusted the EQ model to describe

ordinary friction and to describe qualitatively both the
stick-slip and the smooth-sliding regimes observed in
laboratory experiments. Being one-dimensional, Persson’s
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model cannot of course be expected to reproduce
completely and quantitatively the full SFB experimental
behavior. An extension of the model to two dimen-
sions [15] improved considerably the agreement with
experiment, including a prediction of the critical veloc-
ity of the transition from stick-slip to smooth sliding.
Recently [17,18] it became clear that a crucial ingredient
of the EQ-like model in tribological applications is the
distribution of static yield thresholds for the breaking of
individual contacts. In the early variants of the model, all
contacts had been assumed to be identical for the sake
of simplicity, and a distribution of thresholds appeared
only implicitly due to temperature fluctuations [14]
or due to interaction between the contacts [15]. As a
matter of fact, the EQ model with identical contacts is
a singular case [17]. It admits a periodic solution which
can be interpreted as a form of stick-slip. Nonetheless
this solution remains largely unphysical since for example
it ceases to exist as soon as nonequivalent contacts are
considered, whatever their precise properties. As soon as
a finite width distribution of yield thresholds is taken
into account, the solution of the model in the quasistatic
limit always approaches a physical solution with smooth
sliding [17,18]. Incorporating at the outset a threshold
distribution allows to find the steady-state solution of
the EQ model analytically, and more importantly to
find conditions for appearance of the elastic instability,
which is the necessary condition for the stick-slip to
emerge [18,19]. Work along this line [18] concentrated
so far mainly on general aspects and on identifying a
steady-state solution of the EQ model with the threshold
distribution.
Here we study in detail the kinetics of the model, with

parameters addressing the specific case of experimental
interest. By doing that, we find that a realistic EQ
model of boundary lubrication can explain in great detail
all frictional features observed in SFB experiments and
particularly the observed slow slip dynamics. The gradual
yielding of contacts one after the other is the factor slowing
down the onset of slip, and making it slower than inertial,
quite independently of the lubricant’s viscosity. A simple
change of experimental parameters can easily test this
conclusion. In this study we find that other important
parameters controlling the occurrence of stick-slip against
smooth sliding, as well as details of the slip, include the
width of the distribution of contact breaking thresholds
(responsible for the elastic instability) and a finite delay
time for contacts reforming which is the second necessary
condition for stick-slip to occur. Altogether, our treatment
underlines the necessity to include the inhomogeneity
and complexity of real interfaces in the description of all
macroscopic and mesoscopic stick-slip including SFB.

Model. – We use a variant of the Burridge-Knopoff
spring-block model of earthquakes adapted to laboratory
tribology problems by Persson [14]. The model consists
of a planar array of contacts (representing, e.g., patches

Fig. 1: (Colour on-line) The earthquakelike model.

of lubricant, or 2D crystalline domains) i= 1, 2, . . . , N ,
each connecting the base and the slider through a spring
of elastic constants ki (fig. 1). At rest and zero external
stress, these N contacts are assumed to form a perturbed

2D lattice, where positions r
(0)
i = (x

(0)
i , y

(0)
i ) are obtained

by shifting triangular lattice positions of spacing a by
random Gaussian shifts ∆xi, ∆yi of zero mean and width

∆x. Under shear, the contacts move to ri = r
(0)
i + li,

where li are stretchings (relative to the base), and the

lateral force from the base on the i-th contact is f
(sub)
i =

−kili. As known in surface physics [20–23], the energy
of elastic interaction between local defects on a surface
of semi-infinite crystal falls off with distance as ∝ r−3.
Therefore, we assume that contacts also interact elastically

through pairwise forces f
(int)
ij ≈ 3 g(ri− rj)/(r

0
ij)
5, where

g is the strength of interaction. The total force exerted
on contact i by the base and by other contacts is thus

fi = f
(sub)
i +

∑
j f
(int)
ij . In addition, we assume each contact

to be coupled “frictionally” to the slider, as follows. The
contact moves rigidly with the slider so long as the total
force |fi|< fsi, where fsi is an upper threshold value.
Above that threshold the contact detaches from the slider
and slips relative to it for a time τi after which it stops
and attaches again to the slider. During slip, the contact

feels a drag force from the slider f
(drag)
i =miηi(vs− l̇i),

where vs(t) is the slider velocity, mi is the mass of the
contact and ηi a local viscosity parameter of the lubricant.
After slip, the contact sticks, re-attaching to the slider.
Stick occurs when the total force |fi| drops below a lower
threshold value fbi≪ fsi, and with a delay time τi. We
will assume contact independent values η, τd and fb for
ηi, τi and fbi, respectively.
Three parameters fsi, mi, and ki are thus associated

with each contact. We assume that the thresholds fsi
take random values from a Gaussian distribution of mean
value fs and standard deviation ∆fs. The continuous
distribution of thresholds is the main factor affecting the
initial slowing-down of the slip, to be discussed later.
Both fsi and mi should be proportional to the contact
area Ai = πa

2
i (ai is the contact radius), while the contact

stiffness is given by ki ≈ ρ c
2ai [14], where ρ is the mass

density and c is the transverse sound velocity of the
material which forms the contacts (i.e., of the substrate
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or the lubricant). Therefore, we take mi =mfsi/fs and
ki = k (fsi/fs)

1/2, where m and k are the mean mass and
stiffness of the contacts. When a contact is “reborn” its
parameters are assigned new values.
The slider is modelled as a rigid body of mass M

and center-of-mass coordinate R= (X,Y ), all elastic and
plastic phenomena restricted to the contacts. The slider
is subject to an external force exerted through a spring
of elastic constant K moving with speed vd relative to
the base. In addition, the slider experiences the force

F=
∑
i(fi+ f

(drag)
i ) from all contacts (either pinned or

sliding). Its motion is thus described by

MẌ +MηS

(
Ẋ −〈Ẋ(t)〉

)
= Fx(t)+K(Xd−X), (1)

where Xd = vdt and 〈Ẋ(t)〉= ηS
∫ t
−∞
dt′ Ẋ(t′) e−ηS(t−t

′).
Here, inertial oscillations of the slider at its natural
frequency ΩS are attenuated through a damping coeffi-
cient ηS . It should be emphasized that this damping acts
only on the motion of a part of the slider relative the other
parts, thus mimicking internal degrees of freedom of the
slider not explicitly taken into consideration, and does not
influence the overall motion of the slider with a constant
velocity. Finally, similar equations apply for the Y coordi-
nate, with Yd ≡ 0.

Parameters. – For the sake of quantitative results,
we choose to model the freshest and highest-resolution
SFB experiment whose description [3] fortunately permits
almost all model parameters to be extracted. The
slider mass and the setup stiffness are M = 1.47 g and
K = 97N/m, so that ΩS = 257 s

−1 and the “natural”
period τS = 2π/ΩS = 0.0245 s. For the slider inner
damping we use ηS = 0.2ΩS which reproduces the exper-
imentally observed attenuation of ringing oscillations [3].
We assume a four-layer OMCTS lubricant film of thick-
ness h= 3.5 nm, and contact area A= 10−10m2 [2].
Accordingly, we have a= (A/N)1/2 for the average
distance between the contacts, Ai =A/N for the aver-
age area of a contact, ai = (Ai/π)

1/2 for its average
radius, and m= ρOMCTSAih for its average mass. For
the contact viscosity we use η= 2× 1011 s−1, obtained
from the bulk viscosity of the OMCTS lubricant,
η̃OMCTS ≈ 2.5× 10

−3 Pa·s (at room temperature). The
static threshold force value is taken as fs = Fs/N
with Fs = 18µN [2,3]. For the remaining parameters,
we used kN = 2000N/m, ∆fs = 0.01fs, fb = 0.1 fs,
vd = 0.1µm/s, and τd = 5× 10

−4 s, but we checked depen-
dence of the results upon their changes. Finally, we take
N = 60× 68 = 4080 and ∆xi = 0.03 a for contact number
and geometry.

Results. – Numerical solution of the EQ model can be
found either with the cellular automaton algorithm [13,15],
or by solution of the master equation [18]; then eq. (1) is
solved by standard Runge-Kutta method. Figure 2 shows
the calculated time dependent spring force F (t) =K(vdt−
X(t)). The calculated frictional dynamics is strikingly
similar to that observed in experiment, down to details

Fig. 2: (Colour on-line) Calculated slider spring force in the
stick-slip regime. Parameters as given in the text, and g= 0.
The inset shows the detail of a slip, with the sudden force drop
and mechanical ringing oscillations.

Fig. 3: (Colour on-line) Force vs. displacement of the rigidly
coupled slider (K =∞) with ∆fs/fs = 0.2 and Nk= 1. The
oscillations are due to the alternate prevailing of contact
breaking (|F∞| drops) and contact reforming (rises). Their
damping leads finally to smooth sliding.

such as the large initial stick force spike, and the smaller
amplitude of subsequent stick spikes (compare fig. 2 with
figs. 1 and 2 in ref. [3]). More generally, the model yields
either stick-slip, as in fig. 2, or smooth sliding as in
fig. 3, depending on parameters. Stick-slip takes place
quite generally, unless a) the pulling spring is too stiff,
K >K∗; b) the contact reattachment delay time τd is too
short; c) the Gaussian spread of threshold forces ∆fs is
excessive; d) the average slider velocity vd is too large.
These conclusions, the overall behavior of F (t) and its
dependence upon parameters are rationalized as follows.

a) Role of spring stiffness. Consider first a rigidly
coupled slider, K =∞. In this limit it was shown analyt-
ically in ref. [18] that when the slider begins to move
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adiabatically, Ẋ > 0, it experiences from the interface a
friction force F∞(X)< 0 typically shown as a function
of position in fig. 3. The sliding is smooth (except for
the singular case of ∆fs = 0), the force F∞(X) attain-
ing asymptotically a position independent value, but the
oscillations represent the germ of stick-slip. Initially |F∞|
grows linearly with X up to ∼N(fs−∆fs) as the contacts
elongate. Gradually however contacts begin to break and
reform, stopping the increase of |F∞| and inverting the
slope through a displacement ∆X ≈∆fs/k until the force
reaches Nfb, where almost all contacts have been reborn.
This is reminiscent of a Volterra oscillation in a predator-
prey problem. Similar to that case the process repeats
itself with a smaller amplitude until, due to increas-
ing dispersion of breaking and reforming processes, the
force asymptotically levels off in smooth sliding. Smooth
sliding persists for a nonrigid slider as well, so long
as the pulling stiffness is large enough, K >K∗, where
K∗ =maxF ′

∞
(X), at least for vd not too large so that

the motion is adiabatic. When conversely the spring is
soft enough, K <K∗, there is an elastic instability [19].
The sliding motion becomes unstable at Xc, where Xc
is the (lowest) solution of F ′

∞
(X) =K (see fig. 3 and

ref. [18]). Omitting the details, one finds that as X(t)
grows past Xc for t > tc, the spring force quickly drops
during an inertial slip time τs ≈ αΩ

−1
S in the form F (t)≈

F (Xc)− (K
2vd/6M)(t− tc)

3, where α= (6FsΩS/Kvd)
1/3

(α≈ 2.21 for the chosen set of parameters)1. One may
think that this instability will result in stick-slip motion.
However, the condition K <K∗ is only necessary but not
sufficient to produce stick-slip.

b) Role of contact delay time. The second necessary
condition for stick-slip is a sufficient delay time τd > 0 for
contact reforming. If τd = 0 the system will in fact still end
up in smooth sliding, at least so long as the mechanical
ringing vibrations can be ignored2. The friction force
dependence upon τd is shown in fig. 4. When τd≪Ω

−1
S ,

after the first few slips the spring force drop fails to reach
below Fb, and eventually smooth sliding is reached, despite
K≪K∗ (fig. 4a). When τd <Ω

−1
S the spring force grows

after the slip, it rings with a frequency ΩL = (Nk/M)
1/2,

but now stick-slip prevails (fig. 4b). When finally τd �Ω
−1
S ,

the spring force drops to negative values, it rings around
zero for a time τd with the setup frequency ΩS and stick-
slip dominates as demonstrated in fig. 4c (in a real setup,
the ringing frequency will also be determined by the mass
and rigidity of the bottom substrate). The parameter τd

1Were we to assume, following [3], the instant melting of the
whole lubricant film, then F (t) would drop as F (t)≈ F (Xc)−B(t−
tc)2 with B = [F (Xc)−Nηmvd]Ω

2
S/2, so that τs ≈ βΩ

−1
S with β =

[2/(1− b)]1/2 and b= ηmvd/fs (b≈ 3.7× 10
−7 for the chosen set

of parameters). In that assumption, only by using artificially large
values for η, could one make τs large as in experiment.
2In Persson’s simulation [14] of the EQ model, where stick-slip

was demonstrated, the delay time τd corresponds to the contact
sliding time necessary for its velocity to fall to zero. However, the
sliding time is only one (relatively small) contribution to τd.

Fig. 4: (Colour on-line) Frictional force F (t) for different
values of the delay time τd. Despite the soft spring constant
K = 97N/m≪K∗ ∼ 105N/m, stick-slip is only found for suffi-
ciently large τd.

is the time needed for formation of a new contact (bridge,
asperity, etc.). For example, if the lubricant is locally
melted because of sliding, τd corresponds to the time
for nucleation and growth of a solid grain in the liquid
lubricant3.

c) Role of dispersion parameter. As we mentioned in
Introduction, the dispersion ∆fs must be nonzero, other-
wise the model has only the singular periodic solution,
previously (and mistakenly) considered as stick-slip. The
ratio ∆fs/fs controls the appearance of elastic instability.
Therefore, the dispersion ∆fs of contact breaking thresh-
olds should not be too large for stick-slip to ensue. We
estimate that K∗ ≈Nk (fs− fb)/∆fs, so that if ∆fs rises,
the sliding will be smooth unless the spring constant gets
really small. In stick-slip, an increase of ∆fs leads to the
decrease of the stick-slip period τss as in fig. 5. The slip
time duration τs also increases with ∆fs, but this effect is
almost negligible.

d) Role of sliding velocity. If the sliding velocity is so
small that the stick-slip cycle period τss is large, τss≫ η

−1
S ,

then ringing is completely damped out during τss. On the
other hand when vd is so high that τss < η

−1
S , then the

contact reforming is progressively disturbed and that may
lead to smooth sliding.

3This is a separate, rather complicated but important physical
problem. Details of contact aging should be considered too. Address-
ing in detail these delicate physical questions lies however clearly
outside of the scope of the present letter.
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Fig. 5: (Colour on-line) Dependence F (t) for different values of
the dispersions ∆fs.

Details of other model parameters such as N , ∆x, fb,
k, and η, are not essential, and while we have no space to
show that, their variations do not change the essence of
the results. In particular, the lubricant viscosity coefficient
η may influence the results only if increased by more than
four orders of magnitude, an increase which now there
is no reason to believe. Increased interaction between the
contacts is also uninfluential. Controlled by the dimension-
less parameter ξ = g/(fsa

4), strong mutual contact inter-
actions cause them to behave more concertedly, making
stick-slip less irregular. Although the present model does
not treat explicitly the aging of contacts [14,15], in some
sense that is implicitly included through the delay time τd.
For example, the ratio ∆fs/fs should decrease with stick
time because of aging. Incomplete aging is involved in the
decrease of stick-slip swing magnitude after the first few
events; in the transition from stick-slip to smooth sliding
with increasing driving velocity; and in other aspects, all
of which could benefit from a more detailed treatment.

Discussion and conclusions. – In the present earth-
quakelike model of SFB boundary lubrication, the popu-
lation of broken vs. unbroken contacts tends to oscillate
spontaneously —a sort of Volterra oscillation. Stick-slip
follows when simultaneously the slider is mechanically
soft; when the contacts take enough time to be reformed;
and when their static sliding thresholds are not identi-
cal but not too spread apart. The elastic energy stored in
the slider during stick is partly dissipated during slip, and
partly during the following ringing oscillations [3]. In our
model the gradual breaking (melting) of different micro-
scopic contacts (domains) is responsible for slowing down
the detachment which initiates the slip. As a result, and
contrary to previous claims, the increase of slip time τs
over the bare setup inertial frequency ΩS [24] is a slowing-
down caused by the contact multiplicity, and not by the
lubricant viscosity η, which influences the results very
little. Our conclusion may easily be checked experimen-
tally by changing, for example, the loading force. Indeed,

the damping force associated with the lubricant viscosity
in the uniform melting interpretation is directly propor-
tional to the contact area, which in turn is roughly propor-
tional to the load. We note nonetheless that lubricant
parameters such as the dispersion ∆fs/fs and the delay
time τd are rather important as they control the system
dynamics. The mechanism and the model described here
should have much broader applicability than just the
example chosen. The great merit of boundary lubrication
is however that the high-resolution SFB data have made
the problem for the first time fully quantitative.
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