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The driven underdamped system of anharmonically interacting

atoms in the periodic 1D and 2D external potential is studied.

When the driving force increases, the system transfers from a

locked state to an ordered sliding state corresponding to a moving

crystal. It is shown that, before the transition to the sliding state,

the system passes through an inhomogeneous state, where it splits

into regions of immobile atoms (�traffic jams�) and regions of

running atoms. We propose a new model, where the particles have

a complex structure treated in a mean-field fashion: the collisions

of particles are inelastic, and each particle is considered as having

its own thermostat. When an external force is applied to atoms,

this model exhibits a hysteresis and a clustering of atoms (the

traffic-jam regime) for a much wider range of model parameters

than that in the classical elastic model, and both these effects

survive at high temperatures.

1. Introduction

Driven diffusive systems belong to the simplest models

of nonequilibrium statistical mechanics. These systems

are characterized by a locally conserved density, and a

uniform external field sets up a steady mass current. The

systems of this class have a wide application area in the

modeling of charge and mass transport in solids.

Traditionally, the diffusive systems are studied in

the framework of discrete lattice-gas models (e.g., see

[1] and references therein), while much less is known

about the behavior of continuous models. One of the

simplest continuous diffusive models is the generalized

Frenkel�Kontorova (FK) model [2]. In this model, a

one- or two-dimensional array of atoms is placed into

the external periodic potential, and the atomic current

in response to the dc driving force f is studied by

solving the Langevin motion equations. The mobility

and diffusivity of the FK-type models are determined by

kinks (topological excitations corresponding to the local

compression or extension of a commensurate structure)

[2�4]. The dynamics of an FK system was found to be

strongly affected by the damping coefficient � in the

Langevin equations [2]. For a small applied force f ,

the total potential experienced by a particle possesses

an array of local minima. Hence, the particles are in

the locked state, and the system mobility B = hvi=f
vanishes at zero temperature and is exponentially small

at low temperatures (here, v is the drift velocity and

m is the atomic mass). When f increases, the system

behaves in different ways depending on the value of

�. In the overdamped case, � & !s (here, !s is a

characteristic frequency of atomic oscillations at the

minimum of the substrate potential), the minima in

the total potential vanish at some critical force fs, and

the particle begins to slide over the corrugated total

potential with almost a maximum mobility of B = Bf �
(m�)�1, so that the system is in the sliding state. On

the contrary, in the underdamped case, � � !s, the

system may possess a sliding solution even before the

minima of the total potential vanish. In the latter case,

the function B(f) exhibits a hysteresis. In addition,

during the locked-to-sliding transition, the atoms have

a tendency to be organized in compact groups of two

different types. One consists only of slowly moving

atoms (which resemble �traffic jams�), and the other

one includes �running� atoms moving with the maximum

velocity [2]. The jamming effects have attracted a broad

interest in different areas of physics, in particular, in

plastic flows of a solid or in the physics of granular gases.

In addition, last years, the driven diffusive models are

used in tribology, where the driving force emerges owing

to the motion of one of two substrates separated by a

thin atomic layer. It was recognized that, in many cases,

namely the jamming is the main source of the static

friction [5]. In the present work, we study numerically

the jamming effects in continuous FK-type models. We

consider three variants of the model: the 1D FK model

with anharmonic interatomic interaction (Sec. 2), the

isotropic 2D FK model (Sec. 3), and the �soft� 1D FK

model, where interatomic collisions are inelastic (Sec.

4). All these models exhibit phase segregation for some

range of model parameters. In Sec. 5 we present a

qualitative explanation of simulation results. Finally,

Sec. 6 concludes the paper.

2. Anharmonic FK Model

As the first example, let us consider an anharmonic FK

model. Let a chain of N atoms be subjected to the

sinusoidal external potential with the amplitude " = 2
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Fig. 1. The dependences �B(f) for the standard Frenkel�

Kontorova model with harmonic interaction (open diamonds) and

for the model with exponential interaction (2) with � = 1=� (solid

diamonds). Solid curves correspond to an increasing force and

dotted curves to a decreasing force. The model parameters are

� = 2=3, N = 256, g = 0:1, T = 0:1, and � = 0:1

and the period a = 2�, the atomic mass is m = 1 (this

defines our system of units). The equation of motion for

the atomic coordinate xl reads

�xl + � _xl + sinxl +
@

@xl
[V (xl+1 � xl)+

+ V (xl � xl�1)] = f + ÆFl(t); (1)

where 1 � l � N , and the periodic boundary conditions

are assumed. The substrate potential has M wells on

the chain length, so that the dimensionless atomic

concentration is � = N=M , and the average distance

between the atoms is aA = a=�. The coefficient �

corresponds to the external viscous damping due to the

energy exchange between the chain and the substrate.

For the interaction of nearest neighboring atoms, we

took the exponential potential

V (x) = V0e
��x; (2)

so that the characteristic radius of interaction is r =
��1. The dimensionless elastic constant, which is the

main parameter of the classical FK model, is defined

as [2]

g = a2V 00(aA)=2�
2": (3)

For potential (2), g is equal to g = V0�
2 exp(��aA). To

all atoms we applied a dc force f and also the Gaussian

random force ÆFl(t), hÆFl(t) ÆFl0 (t0)i = 2�TÆll0Æ(t � t0),
which models a thermal bath with a temperature T . In

simulations, we calculated the average system velocity

and then the mobility B defined as B = hvi=f , where
h: : :i stands for the averaging over the system and time.

If the substrate potential is absent, for any f > 0
after a time t � ��1 the system reaches a steady state

characterized by the maximum mobility Bf . In addition,

we calculated the velocity correlation function

Kv = h( _xl+1 � _xl)
2i (4)

which will be used to distinguish a homogeneous steady

state from inhomogeneous ones.

The simulation results are presented in Fig. 1.

Comparing the hysteretic curves of Fig. 1 for

the standard FK model (open diamonds) with

those calculated for the exponential interaction (solid

diamonds), one can see the following essential difference

between them. For the harmonic interaction, the system

goes directly from the low-mobility (locked) state to the

high-mobility (running, or sliding) state. Although the

system may be found in steady states with intermediate

values of B, these states always correspond to a

homogeneous state on a spacial scale larger than

the lattice constant a. On the other hand, for an

anharmonic interaction between the atoms, the system

passes through intermediate states which are spatially

inhomogeneous. In this type of steady states, the system

splits into two qualitatively different regions which differ

by the atomic concentration and velocities. A typical

picture of atomic trajectories is presented in Fig. 2.

One can clearly distinguish �running� regions,

where atoms move with almost maximum velocities,

and �traffic-jam� regions, where atoms are almost

immobile. The regions characterized by a larger

atomic concentration and smaller (almost zero) atomic

velocities are called by jams in what follows. Figure 2

also demonstrates the dynamics of a single jam. The

jam grows from its left-hand side due to incoming atoms

which stop after collisions with the jam and then join

the jam. From the right-hand side, the jam shortens,

emitting atoms to the right-hand-side running region.

In addition, one can see also a detailed scenario of the

jam's dynamics: when an incoming atom collides with

the jam, it creates a kink (local compression) in the jam.

This kink then runs to the right-hand side of the jam

and stimulates there the emission of the atom into the

right-hand-side running domain.

Thus, the simulations show that the traffic-jam

state may correspond to a steady state of the system.

A detailed numerical analysis [6] combined with the

investigation of the corresponding Fokker�Planck
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of the external periodic potential [i.e., for � > a�1 for

the exponential interaction (2)], and only for a narrow

interval of damping coefficients around � � 0:2.

3. A Two-dimensional FK Model

Next, let us consider the two-dimensional Frenkel�

Kontorova model. Let a two-dimensional array of

atoms with position vector u = (ux; uy) be subjected

to a periodic substrate potential with the triangular

symmetry, which is a generic example of isotropic 2D

systems. The substrate potential is chosen in a simple

form

Vsub(x; y) =
1

2
" f1� cos (2�x=ax) cos (�y=ay) +

+
1

2
[1� cos (2�y=ay)]

�
; (5)

where ax = a = 2� and ay = a
p
3=2 are the

lattice constants. Function (5) is characterized by the

isotropic minima organized into the triangular lattice

and separated by isotropic energy barriers of height " =
2. The frequencies of atomic vibrations at the minima are

isotropic, !x = !y = !s � ("=2m)1=2(2�=a) = 1. Flat
maxima of potential (5) are organized into a honeycomb

lattice.

As above in Sec. 2, we consider the case of

an exponential interaction between atoms, V (r) =
V0 exp(��r), where ��1 is the radius of interaction

(in the simulation, we chose � = a�1). Then the

main parameter of the FK model is the effective elastic

constant g = a2V 00(r0)=2�
2", where r0 is the average

interatomic distance [2]. This single dimensionless

number gives an indication of the strength of the elastic

constant of the atomic layer relative to the strength of

the substrate potential. A value of g much smaller than

1 indicates a weakly coupled layer. This situation may

correspond, for example, to a monolayer adsorbed on a

crystal surface. A value g & 1 describes a stiff atomic

layer compared with the substrate depth. For example,

the case of dry friction between two blocks of material

corresponds to this limit.

The equation of motion for the displacement vector

ul (1 � l � N) is given by the Langevin equation

�wl + � _wl +
d

dwl

2
4 X
l0 (l0 6=l)

V (jul � ul0 j) + Vsub

3
5 =

= fw + Fw

rand; (6)

where w = ux or uy. The force fw = fx or fy is

the externally applied force, while Fw

rand is the Gaussian

random force required to equilibrate the damped system

to a given temperature T . In the present work, we

modeled the atomic layer by N = 768 atoms placed onto

the triangular substrate of size M =MxMy = 32�32 =
1024, so that the dimensionless concentration is � = 3=4,
and we consider a driving force acting in the x direction

only, so that fx = f and fy = 0.

With increase in the driving force for the

underdamped system, we always observed a transition

from a locked state to an ordered sliding state of a

moving crystal. However, the scenario of the locked-to-

sliding transition and the intermediate phases through

which the system passes during the transition, are

strongly determined by the values of g, � and T . In

most cases, the system passes through the plastic phase,

where different portions of the lattice are moving with

different velocities, or some are moving, while others

remain pinned. The plastic phase can be in the form

of channels that we call the plastic channel phase (this

phase is observed both in underdamped and overdamped

systems), or in the form of immobile regions in the sea of

running atoms that we call the traffic-jam (TJ) plastic

phase. In the plastic channel phase only one part of

particles is mobile while others remain pinned for the

extremely long time. In the simulation one can observe

the channels of crystalline or disorder flow separated by

the channel of immobile particles [7]. In the TJ plastic

phase, all particles are mobile but, at any moment, a

subset of particles spends some short time to be pinned

and then continues to move again. These pinned regions

look as entities that migrate in the direction opposite to

the driving force.

The TJ phase may emerge in the underdamped

system only [8]. Figure 4 demonstrates a typical example

of the dependence of the mobility B on the driving force

f for the stiff layer with g = 0:857 for the low damping

� = 0:1.

An intermediate phase appears at f � 0:12 when

the system goes from the pinned state to the disordered

steady state with low mobility B � 0:1. At this

phase, the atoms move chaotically around their pinning

sites. Looking on atomic trajectories (Fig. 5), we see

that this state corresponds to the TJ plastic regime

with immobile islands surrounded by regions of slowly

running atoms [7].

The TJ steady state survives until the driving force

f � 0:34. Then the mobility increases and the system

transfers to the ordered phase of a moving crystal,

passing through the plastic-channel regime.

756 ISSN 0503-1265. Ukr. J. Phys. 2005. V. 50, N 8
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Fig. 4. The normalized mobility B=Bf as a function of driving

force for the 2D FK model with � = 3=4, g = 0:857, � = 1=2�,

and � = 0:1 at T = 0:001

For a larger damping � = 0:3, we also observed the

plastic TJ flow for 0:23 < f < 0:54 when B � 0:25, but
now the atomic motion is essentially one-dimensional

along channels in the driving direction [7]. The moving

atoms strongly oscillate in the transverse direction but

remain within their rows. The motion inside each row

is similar to the 1D TJ motion in the anharmonic 1D

FK model described above in Sec. 2: inside a row, the

system splits into closely packed immobile 1D islands

(traffic jams) and less dense running domains.

4. An Inelastic FK Model

As a third example, let us consider a problem of modeling

of a system consisting of �complex� particles which have

their own structure with internal degrees of freedom.

The internal modes may be excited due to interparticle

collisions and take away the kinetic energy of the

translational motion, so that the collisions are inelastic.

This is a typical situation in soft-matter physics, for

example, in the physics of granular gases [9, 10]. A

model of such type have been studied recently in [11],

where the simplest case of two �atoms� in the double-

well external potential was considered, when the atomic

hard-core collisions are inelastic. The model exhibits the

effect of atoms' �clustering�, when both atoms prefer to

stay in the same well of the substrate potential and

hop simultaneously over the barrier. The model [11] is,

however, physically artificial in the sense that it violates

the energy conservation principle: the energy which is

lost in collisions disappears then forever. As a result, the

Fig. 5. Snapshot configurations of the TJ plastic phase of the 2D

FK model for g = 0:857, � = 1=2�, � = 0:1, and T = 0:001 at

f = 0:165 (top panel) and f = 0:33 (bottom panel). Solid curves

show atomic trajectories

energy losses due to collisions lead to the effective cooling

of the system.

In a more realistic physical model, the kinetic energy

of atomic translational motion that is lost at a collision,

is stored as the energy of excitation of internal degrees

of freedom and may be released later, being transformed

back into the kinetic energy. In a simple case, when

the number of internal degrees of freedom is �large� and

their coupling is nonlinear, the energy lost at collisions is

transformed into �heating� of particles. In what follows,

we introduce a new type of stochastic models, the
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model with multiple thermostats , where, additionally to

the standard �substrate� thermostat, each particle is

considered as having its own �thermostat�.

As an example, let us again consider the 1D

FK-type model with nearest-neighbors (NN) inelastic

interaction. Namely, let the chain of N atoms be

subjected into M minima of the sinusoidal substrate

potential with periodic boundary conditions, so that the

motion equation for the lth particle has the form

m�xl +m� _xl + sinxl = �fl+1; l + fl; l�1 + ÆFl(t) + f; (7)

where the dot (prime) stands for the time (spatial)

derivative. To each atom, we apply the dc force f

and the viscous damping force with the coefficient �

which describes the energy exchange with the substrate.

The substrate thermostat is modeled by the Gaussian

stochastic force ÆFl(t).

The interaction is taken as exponentially decaying

with the interatomic distance, V (x) = V0 exp(��x). The
inelasticity of collisions is modeled by a viscous damping

force proportional to the relative velocity of two atoms,

so that the mutual interaction between the l-th and

(l � 1)-th particles is described by the force fl; l�1,

fl; l�1 = �V 0(xl � xl�1)�mr�l ( _xl � _xl�1) + Æfl(t); (8)

where the first term on the r.h.s. of Eq. (8) describes the

elastic interaction, V 0(x) � dV (x)=dx, the second term

describes the inelasticity due to viscous damping with

a coefficient �l, mr = m=2 is the reduced mass of two

colliding atoms, and the last term is the stochastic force

that compensates the energy losses emerged due to the

inelasticity,

hÆfl(t) Æfl0(t0)i = 2�lmrTÆll0Æ(t� t0): (9)

The mutual damping �l was chosen to depend on the

distance between the NN atoms in the same way as the

potential, �l = �� exp[��(xl � xl�1 � aA)], where ��

is a parameter which characterizes the inelasticity: the

interaction is elastic in the case of �� = 0, while the

collisions are totally damped in the limit �� !1.

The set of Langevin equations (7)�(9) is equivalent

to the Fokker�Planck�Kramers equation for the

distribution function W (fxlg; f _xlg; t),

@W

@t
+
X
l

�
_xl
@W

@xl
+ [f � V 0

sub(xl)+

+ V 0(xl+1 � xl)� V 0(xl � xl�1)]
@W

@ _xl

�
=

=
1

2

X
l

@

@ _xl

�
(2� + �l+1 + �l)

�
_xl + T

@

@ _xl

�
�

��l+1
�
_xl+1 + T

@

@ _xl+1

�
� �l

�
_xl�1 + T

@

@ _xl�1

��
W:(10)

It is easy to check that, in the nondriven case where

f = 0, the Maxwell-Boltzmann distribution is a

solution of Eq. (10), so that our model has the truly

thermodynamically equilibrium state.

In the driven case, f > 0, the equilibrium state is

destroyed, and the system exhibits a transition from

the locked state at low driving (with exponentially low

mobility at low temperatures) to the sliding (running)

stationary state at high driving, where all atoms move

with almost the same velocity f=m�. For the classical

FK model described in Sec. 2, when the interactions are

elastic, the average velocity of atoms as a function of

f exhibits a hysteresis at zero temperature. But, at any

T > 0, the hysteresis disappears for an adiabatically slow
change of the driving in the 1D model (in simulations,

where the force f changes with a finite rate, a small

hysteresis persists due to a delay in the formation of

the steady state). In addition, in the case of exponential

interactions, the steady state during the locked-to-

sliding transition for some range of model parameters

corresponds to the TJ state with a nonuniform spatial

distribution of atoms.

In what follows, we show that both these properties

of the transition change drastically for the inelastic

interaction. First, the system exhibits a hysteresis even

at very high temperatures. Second, the TJ regime is

observed for a much wider range of model parameters,

thus now it is a generic property of the system. Both

these effects appear because of the clustering of atoms:

in the case of the inelastic interaction, the energy losses

are minimal when the NN atoms move with the same

velocity and the mutual viscous forces are zero.

In the simulation, we chose N=M = 144=233 which

is close to the �golden-mean� atomic concentration. The

force was typically changed with the rate R � �f=�t =
0:0025=(2 � 1000 � 2�) � 2 � 10�7 which is low enough

to be considered as adiabatically slow. Typically, we

used the following parameters: � = 0:01 (recall that, for

the �elastic� FK model, Sec. 2, TJs are observed for a

window of frictions around � � 0:2, i.e. for much higher

values of the atom-substrate damping), � = 1=� so that

the dimensionless anharmonicity parameter is �as = 2
(according to Sec. 2, TJs appear only for a large enough

anharmonicity of the interaction, �as > 1), g = 1 (recall
that in the classical FK model at T = 0, the Aubry

locked-to-sliding transition takes place with increase in
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Fig. 6. Dependence of the normalized mobility B=Bf on the force

f for three values of the intrinsic damping: �� = 0 (up triangles,

the elastic model), �� = e�aA � 0:0393 (down triangles), and

�� = 10 e�aA � 0:393 (black diamonds) for the force increasing

(solid curves and symbols) and the force decreasing (dotted curves

and open symbols). Other parameters are the following: � = 1=�,

g = 1, � = 0:01, and T = 1. Inset: B(f) for �� � 0:0393 for three

values of the rate of force changing: R � 10�6 (up triangles),

R � 2 � 10�7 (down triangles), and R � 4 � 10�8 (black diamonds)

g at g � 1), and T = 1 which is quite large as compared

with the barrier height " = 2.

The simulation results for the normalized mobility B

are presented in Fig. 6. One can see that while there is no

hysteresis of the B(f) dependence for the elastic model

(a narrow hysteresis is because of a finite step of force

changing), the hysteresis does exist for �� > 0 and its

width strongly increases with ��. Moreover, the width

of the hysteresis does not change essentially if the force

increasing/decreasing rate changes by 25 times as shown

in the inset in Fig. 6.

We emphasize that the hysteresis in Fig. 6 is for a

quite large temperature T = 1. Although the hysteretic

width decreases when T grows, it still survives even at

T = 2 (when "s=kBT = 1!) and disappears at huge

temperatures only. For example, in the �� � 0:0393
case the dependence �F (T ) = fforward(T )�fbackward(T )
may be fitted by the exponential dependence �F (T ) =
�F0e

�T=T�

with�F0 � 0:156 and T � � 0:76. Therefore,
the hysteresis disappears when �F (T ) . �f = 0:0025
which gives Tm & 3:15.

Fig. 7. Atomic trajectories versus time in the traffic-jam regime

for f = 0:095, �� � 0:0393, � = 1=�, g = 1, � = 0:01, and T = 1

Qualitatively the existence of hysteresis may be

explained in the same way as in [6]: The system cannot

be transformed from the locked state to the running state

and vice versa as a whole; first, a small cluster of atoms

(a critical �nucleus�) should undergo the transition, and

then it will move the whole system into a new state. In

the �soft� model considered here, when a fluctuation of

the relative velocity of the NN atoms is suppressed, the

probability of the emerging of a nucleus with a maximum

velocity on the background of immobile atoms (as well

as the nucleus of locked atoms in the sea of running ones)

is much lower than that in the elastic model.

The hysteretic behavior described above clearly

indicates the clustering of atoms in the soft model. One

more indication of this effect is the plateau at B � 0:5 on
the B(f) dependence (Fig. 6) which corresponds to the

traffic-jam regime. The TJ state appears for the interval

of forces 0:09 � f � 0:0975 in the force-increasing

process and survives till f � 0:0725 if the force decreases
starting from the TJ state. The atomic trajectories in the

TJ state are shown in Fig. 7.

Note that now the TJ phase is observed for a

much wider range of model parameters and very high

temperatures.

To study the TJ state, we calculated the coordinate

and velocity correlation functions for the NN atoms,

Kx = h(xl � xl�1 � aA)
2i and Kv = h( _xl �
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_xl�1)
2i. For a spatially homogeneous state, we should

have Kx � Kx0 = T=g and Kv � Kv0 = 2T ,
while, for an inhomogeneous (TJ) state, much higher

values are expected. The calculated dependences clearly

demonstrate the destruction of the homogeneous state

in the TJ regime. However, the TJ state is a more

subtle effect of clustering than the hysteretic behavior of

the B(f) dependence. For example, for the parameters

used in Fig. 6, the TJ state disappears at low damping

(�� = 0) as well as at too high values of �� (e.g., for

�� = 0:4).

5. Discussion

The TJ state may emerge in an underdamped system

only, when the substrate damping � is low enough, � <

0:56, and an atom exhibits bistability, i.e. both states,

the locked state and the running state, coexist (and are

dynamically stable) at the same driving f . Then the

locked-to-sliding transition should always pass through

the TJ state, and the only question emerges, is this TJ

state dynamically stable. To describe qualitatively the

steady state with coexistence of two phases in the 1D

model, i.e., the TJ phase consisting of locked atoms and

the running domain (RD), let us suppose that there is

only one jam in the chain, and let the jam contains Ns

atoms on the length Ls = Msas, while the running

domain contains Nr = N � Ns atoms on the length

Mras = (M �Ms)as. According to Figs. 2 and 7, the

local concentration in the jam is �s � Ns=Ms � 1.
The atoms in the RD are characterized by a local

concentration �r � Nr=Mr < 1, and all these atoms

move with a velocity vr � vf = f=m�. Then it is

easy to show [6, 12, 13] that the normalized mobility

is equal to B = Nrvr=Nvf = b�r(1� �)=(1� �r)�, where
b = vr=vf � 1.

The TJ grows from its left-hand-side with the rate

R+ = _Ms = vr=ar, where ar = as=�r, so that

R+ = b �rf=m�as � b �fm�as. From its right-hand-

side, the TJ shortens with the rate �(f) due to the

�evaporation� of the most right atom of the TJ into

the RD. At a low temperature and driving force, when

"(f) � "s � fas=2 � T , the �evaporation� of the most

right atom of the TJ is an activated process, and its

rate is �(f) � �0 exp [�"(f)=T ], where �0 is a pre-

exponential factor. Thus, the TJ decreases with the rate

R� = �(f) = �0 exp (�"s=T ) exp (fas=2T ). In the TJ

steady state the rates of these two processes must be

equal each other, R+ = R�, so that we obtain �r =
m�as�(f)=fb. It is easy to check that the function �r(f)
has a minimum ��

r
= �r(fm) at f = fm = 2T=as = T=�,

and the same is true for the B(f) dependence: the

normalized mobility first decreases and then increases

with f (note that the TJ state is stable with respect

to fluctuations of �r). Finally, the inequality �r(f) < �

defines the range of model parameters and forces, where

the TJ steady state could be stable, i.e., it should be

� < �c � fe��f=T=2��0e
�2=T .

This simple approach allows us to explain

qualitatively the simulation results for the 1D FK-type

models. The TJ state is stable for forces within the

interval f 0b < f < fforward, where f
0
b > fbackward because

of �r < �. To have the TJ state, the external damping

� due to the energy exchange with the substrate must

be small, e.g., � < 0:5. In the elastic 1D FK model at

a so small damping, the critical size of the TJ is very

large: when an atom joins the TJ at its left-hand side, it

excites a kink (local compression) in the TJ. This kink

runs to the right-hand side of the TJ and stimulates the

evaporation of the most right atom of the TJ. In the

inelastic model, such an effect is absent (compare Figs. 2

and 7), the kink's motion is damped due to the intrinsic

damping �l. This explains a much wider range of model

parameters, where the TJ state is stable in the soft FK

model.

6. Conclusion

With the help of the numerical simulation, we have

shown that the driven one-dimensional and two-

dimensional FK models exhibit a hysteresis and the

existence of traffic-jam states. First, the hysteresis does

exist in the underdamped FK model for any finite rate of

force changing. Secondly, traffic jams do appear in the

underdamped FK model with anharmonic interaction.

Already the hard-core potential, when the atoms do

not interact at all except they cannot occupy the same

well of the substrate potential, is sufficient to produce

the traffic-jam behavior. Note that one might expect

no transition to the traffic-jam state for the harmonic

interatomic interaction. However, the situation is more

subtle: there is no transition to the traffic-jam state

for atoms in the standard 1D FK model, but the kinks

may still be organized in jams because, for any short-

ranged interatomic interaction, the interaction between

the kinks is always exponential.

For the 1D FK model, the appearance of the

inhomogeneous TJ state can be qualitatively explained

with simple arguments as described in Sec. 5.

Unfortunately, the behavior of the 2D FK model may be

explained in the framework of a more simplified model

only, e.g., such as the 2D two-state lattice-gas model [1].
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Also we have shown that the dynamics of the soft

model with inelastic interaction strongly differs from the

classical (elastic) one. First, now the system exhibits a

hysteresis even at high temperatures. The reason why

the 1D model exhibits a hysteresis is that the soft model

is effectively an infinite-dimensional one, the particles

have an infinite number of internal degrees of freedom

treated in a mean-field fashion. Secondly, the soft model

allows the coexistence of two phases (the TJ state) for

a much wider range of model parameters. Both these

effects are due to the clustering of atoms in the soft

model. The mechanism of clustering is analogous to that

described in et al [11], although our model is essentially

different: there is no artificial freezing in our model and,

therefore, the correlated motion emerges solely due to

the mutual damping of the NN atomic motion.

In the present work, we have shown the existence of

the TJ state even in the 1D FK models with repulsive

interaction, where the classical model cannot exhibit

phase transitions. In a 2D or 3D system, especially if

there is also an attractive branch of the interatomic

interaction, the changes due to inelasticity should be

even more dramatic. Of course, the damping mechanism

cannot change the phase diagram of the system. But it

certainly will change the kinetics of phase transitions as

well as possible metastable states in which the system

may be captured.

Finally, using the results of the present work, one

can give a simple solution to how to avoid traffic jams:

the particles (atoms in the FK model or cars in the one-

lane road) should interact harmonically, i.e., they should

try to keep an equidistant interval between themselves.

Although this solution is quite trivial and has been

well known empirically for a while, the simple models

considered in the present paper allow us to study this

question analytically.
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ÔÀÇÎÂÀ ÑÅÃÐÅÃÀÖIß Â ÍÅËIÍIÉÍÈÕ ÐÓÕÎÌÈÕ

ÌÎÄÅËßÕ

Î.Ì. Áðàóí

Ð å ç þ ì å

Âèâ÷à¹òüñÿ ñèñòåìà àíãàðìîíiéíî âçà¹ìîäiþ÷èõ àòîìiâ â ïåðiî-

äè÷íîìó îäíîâèìiðíîìó i äâîâèìiðíîìó çîâíiøíüîìó ïîòåí-

öiàëi, ùî ðóõà¹òüñÿ çàâäÿêè çîâíiøíié ñèëi. Êîëè ðóøiéíà ñè-

ëà çðîñòà¹, ñèñòåìà ïåðåõîäèòü âiä íåðóõîìîãî ñòàíó äî ñòà-

íó êîâçàííÿ, ùî âiäïîâiäà¹ ðóõîìîìó êðèñòàëó. Ïîêàçàíî, ùî

ïåðåä ïåðåõîäîì äî ñòàíó êîâçàííÿ ñèñòåìà ïðîõîäèòü ÷åðåç

íåîäíîðiäíèé ñòàí, â ÿêîìó âîíà ðîçùåïëþ¹òüñÿ íà îáëàñòi

íåðóõîìèõ àòîìiâ (�çàòîðè�) i îáëàñòi ðóõîìèõ àòîìiâ. Òàêîæ

çàïðîïîíîâàíà íîâà ìîäåëü, äå ÷àñòèíêè ìàþòü êîìïëåêñíó

ñòðóêòóðó, ùî òðàêòó¹òüñÿ ó íàáëèæåííi ñåðåäíüîãî ïîëÿ: çi-

òêíåííÿ ÷àñòèíîê ¹ íååëàñòè÷íèì, äî òîãî æ ââàæà¹òüñÿ, ùî

êîæíà ÷àñòèíêà âîëîäi¹ âëàñíèì òåðìîñòàòîì. Êîëè íà àòîìè

äi¹ çîâíiøíÿ ñèëà, öÿ ìîäåëü äåìîíñòðó¹ ãiñòåðåçèñ i ñòàí çà-

òîðiâ ðåàëiçó¹òüñÿ äëÿ íàáàãàòî øèðøîãî äiàïàçîíó ïàðàìåò-

ðiâ ìîäåëi, íiæ ó êëàñè÷íié (åëàñòè÷íié) ìîäåëi, i îáèäâà öi

ðåçóëüòàòè çáåðiãàþòüñÿ ïðè âèñîêèõ òåìïåðàòóðàõ.

ÔÀÇÎÂÀß ÑÅÃÐÅÃÀÖÈß Â ÍÅËÈÍÅÉÍÛÕ

ÄÂÈÆÓÙÈÕÑß ÌÎÄÅËßÕ

Î.Ì. Áðàóí

Ð å ç þ ì å

Èçó÷àåòñÿ ñèñòåìà àíãàðìîíè÷åñêè âçàèìîäåéñòâóþùèõ àòî-

ìîâ â ïåðèîäè÷åñêîì îäíîìåðíîì è äâóìåðíîì âíåøíåì ïî-

òåíöèàëå, êîòîðàÿ äâèæåòñÿ ïîä äåéñòâèåì âíåøíåé ñèëû. Êî-

ãäà äâèæóùàÿ ñèëà âîçðàñòàåò, ñèñòåìà ïåðåõîäèò îò íåïî-

äâèæíîãî ñîñòîÿíèÿ ê ñîñòîÿíèþ ñêîëüæåíèÿ, ñîîòâåòñòâóþ-

ùåìó äâèæóùåìóñÿ êðèñòàëëó. Ïîêàçàíî, ÷òî ïåðåä ïåðåõî-

äîì ê ñîñòîÿíèþ ñêîëüæåíèÿ ñèñòåìà ïðîõîäèò ÷åðåç íåîä-

íîðîäíîå ñîñòîÿíèå, â êîòîðîì ñèñòåìà ðàñùåïëÿåòñÿ íà îá-

ëàñòè íåïîäâèæíûõ àòîìîâ (�àâòîìîáèëüíûå ïðîáêè�) è îáëà-
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ñòè áåãóùèõ àòîìîâ. Òàêæå ïðåäëîæåíà íîâàÿ ìîäåëü, ãäå ÷à-

ñòèöû èìåþò ñëîæíóþ ñòðóêòóðó, ðàññìàòðèâàåìóþ â ïðèáëè-

æåíèè ñðåäíåãî ïîëÿ: ñòîëêíîâåíèÿ ÷àñòèö ñ÷èòàþòñÿ íåýëà-

ñòè÷íûìè, à êàæäàÿ ÷àñòèöà ñ÷èòàåòñÿ îáëàäàþùåé ñîáñòâåí-

íûì òåðìîñòàòîì. Êîãäà âíåøíÿÿ ñèëà ïðèëîæåíà ê àòîìàì,

ýòà ìîäåëü äåìîíñòðèðóåò ãèñòåðåçèñ è ðåæèì àâòîìîáèëü-

íûõ ïðîáîê äëÿ íàìíîãî áîëåå øèðîêîãî äèàïàçîíà ïàðà-

ìåòðîâ ìîäåëè, ÷åì êëàññè÷åñêàÿ (óïðóãàÿ) ìîäåëü, ïðè÷åì

îáà ýòè ðåçóëüòàòà íàáëþäàþòñÿ è ïðè âûñîêèõ òåìïåðàòó-

ðàõ.
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